460 likes | 739 Views
TALLER DE ESTADÍSTICA BAYESIANA Y SUS APLICACIONES EN LA EVALUACIÓN DE MEDICAMENTOS: HACIA UN NUEVO PARADIGMA INFERENCIAL. Dr. Luis Carlos Silva Ayçaguer Investigador Titular. OBJETIVO GENERAL.
E N D
TALLER DE ESTADÍSTICA BAYESIANA Y SUS APLICACIONES EN LA EVALUACIÓN DE MEDICAMENTOS: HACIA UN NUEVO PARADIGMA INFERENCIAL Dr. Luis Carlos Silva Ayçaguer Investigador Titular
OBJETIVO GENERAL Aumentar los conocimientos de los Farmacéuticos de Atención Primaria acerca de la Estadística Bayesiana, y como consecuencia de ello, mejorar los conocimientos a la hora de interpretar el análisis estadístico de ensayos clínicos y otros tipos de estudio
OBJETIVOS • Fundamentar la conveniencia de contar con un nuevo paradigma para la inferencia estadística. • Introducir las líneas fundamentales del razonamiento bayesiano. • Ilustrar el empleo del enfoque bayesiano como alternativa al clásico para encarar algunos problemas prácticos de la evaluación de fármacos.
TEMAS • Métodos de inferencia estadística. Valoración crítica • Fundamentos de la Estadística Bayesiana. Estimación y ensayos clínicos • Aplicabilidad de la estadística Bayesiana a los estudios con medicamentos. Dos ilustraciones.
Valores p y pruebas de significación Si comenzamos con certezas terminaremos con dudas; pero si comenzamos con dudas y somos pacientes con ellas, terminaremos con certezas. Francis Bacon
INFERENCIA ESTADÍSTICA A principios de siglo los anécdotas clínicas poblaban las revistas médicas ¿Qué significaban los resultados? EDITORES ¿Cómo cuantificar la evidencia y complementar los razonamientos verbales?
Ronald Fisher (Londres, 1890-Australia, 1962) • Aportes a la estadística: • análisis de la varianza • principio de la aleatorización • idea de la replicación
INFERENCIA ESTADÍSTICA Ho: d=0 Fisher (década de los 20) Se observa Medida de la discrepancia de los datos con la hipótesis, llamada a tener un papel informal (no especificado), junto con el resto de la información, en el flujo inferencial
¿Por qué un nuevo paradigma inferencial? Deconstrucción : “Desmontaje de un concepto o de una construcción intelectual por medio de su análisis, mostrando así contradicciones y ambigüedades”. Diccionario de la Real Academia Española
Valoración crítica de los valores “p” y las pruebas de significación Una polémica escamoteada
“Las PSE constituyen con toda seguridad el más idiota proceder jamás institucionalizado en el entrenamiento maquinal de los estudiantes de ciencia” Rozeboom WW (1997) Good science is abductive, not hypothetico-deductive. En LL Harlow, SA Mulaik, & JH Steiger (Eds.), What if there were no significance tests? (pp. 335–391). Hillsdale, NJ: Erlbaum.
Falacia Transposición de condicionantes P(H|D) = P(D|H)
“Normas para la presentación de comunicaciones libres a premio al mejor trabajo” del XIII CONGRESO NACIONAL DE MEDICINA en Argentina del año 2003 Las abreviaturas y siglas en tablas y figuras, deben aclararse en las leyendas respectivas, pero NS (no significativo), ES (error estándar), DS (desvío estándar), IC95 (intervalo de confianza del 95 %) y p (probabilidad de que la hipótesis nula sea cierta) no requieren aclararse.
Rossi JS (1997) A case study in the failure of psychology as a cumulative science: The spontaneous recovery of verbal learning. En L. L. Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance tests? (pp. 175–197). Hillsdale, NJ: Erlbaum. Es importante que los investigadores sean precavidos con la potencia de sus experimentos; no solo han de poder detectarse los efectos buscados, sino que también debe evitarse la detección de pequeños efectos triviales.
Sacket (1979) Las muestras demasiado pequeñas pueden servir para no probar nada, las muestras demasiado grandes pueden servir para no probar nada.
“En lo que concierne al tamaño muestral, es concebible que las diferencias en homeostasis de la glucosa y en la distribución de tejido adiposo entre los grupos pudiera haber sido detectadas con un tamaño de muestra mayor”. (Bitnun, 2003) “Se tomaron mediciones de la RVIP, pero no mostraron efectos de la ingestión de agua; sin embargo, no podemos descartar la posibilidad de que se hubieran detectado cambios con un tamaño de muestra mayor”. (Neave, Scholey, Emmett, Moss, Kennedy y Wesnes, 2001)
Comité Internacional de Directores de Revistas Médicas (Grupo de Vancouver) oct 2008 • En la medida de lo posible, cuantifique los hallazgos y presente los mismos con los indicadores apropiados de error o de incertidumbre de la medición (como los intervalos de confianza). • Se evitará la dependencia exclusiva de las pruebas estadísticas de verificación de hipótesis, tal como el uso de los valores P, que no aportan ninguna información cuantitativa importante sobre la magnitud del efecto.
Es natural que se aspire a contar con un procedimiento inferencial que tenga los siguientes rasgos (ninguno de los cuales, como se ha dicho, está presente en la teoría frecuentista de las pruebas de hipótesis):
Que cuanto mayor sea el tamaño muestral, con más elementos se cuente para valorar adecuadamente la realidad que esa muestra representa. Que valore la credibilidad o verosimilitud de las hipótesis en lugar de obligarnos a adoptar decisiones dicotómicas sobre ellas. Que no parta de una supuesta orfandad total de información; que el modelo de análisis contemple de manera formal el conocimiento previo y la experiencia precedente Que no desdeñe nunca el resultado de un estudio y otorgue a los datos la importancia que tienen, cualquiera sea el tamaño muestral Que contemple las hipótesis rivales a la luz de los datos y no éstos a la luz de una única hipótesis
Estimación de un porcentaje P por MSA P= A/N = ? N A a n Intervalo de confianza (13,1 – 27,0) p=16,8% e=3,7 n=400 a=38
Ensayo controlado aleatorizado 8 23 Mejoran Met 50 No mej azar Población de adictos Muestra 19 Mejoran Her 27 No mej tiempo
Non parametric distribution of success rates differences between the experimental and control groups for the three possible scenarios (without using the Dutch data in order to determine the priors with partial and total use)
the probability of success in the experimental group is higher than in the control group. In the last two cases, the whole distributions are located to the right of the zero, above the 6% level; in the first one, the distribution includes a very small fraction of the negative semi axis. The 95% probability intervals for the difference and probabilities of Δ >0 and Δ >0,15 are:
Asignación aleatoria adaptativa en un ECC N= número total de sujetos Tratamiento A Tratamiento B 1/2 1/2 Sra Pérez, tengo 2 posibles tratamientos para su cáncer: A y B, pero yo no sé cuál es mejor. Yo podría incluirla en un ensayo clínico concebido para evaluar cuál de dichos tratamientos es mejor. Si Ud está de acuerdo en participar, el que le apliquemos a Ud. será seleccionado mediante el lanzamiento de una moneda.
Asignación aleatoria adaptativa en un ECC N= número máximo de sujetos Tratamiento B Tratamiento A Sujeto n+1 modulador donde Y donde n es el número de sujetos ya asignados
N=200 Por ejemplo, si n=42 y hasta ese momento se tiene que Tratamiento A Tratamiento B Asignados=28 Exitos=11 Asignados=14 Exitos=4 El modulador será: y De modo que:
Ilustración de las probabilidades de asignación aleatoria adaptativa a lo largo de un ECC usando modulador n/2N A:16/62 B:36/82 Probab de recibir un tto superior Paciente
Tratamiento A Tratamiento B Sra Pérez, tengo 2 posibles tratamientos para su cáncer: A y B, pero yo no sé cuál es mejor. Yo podría incluirla en un ensayo clínico concebido para evaluar cuál de dichos tratamientos es mejor. Si Ud está de acuerdo en participar, el que le apliquemos a Ud. será seleccionado al azar a través de un programa informático que se basa en los datos que nosotros tengamos hasta el momento acerca de cuán bien estos 2 tratamientos hayan funcionado con pacientes anteriormente tratados en este estudio.
Editorial Díaz de Santos Madrid, 2008
Luis Carlos Silva AyçaguerInvestigador Titular Centro Nacional de Información de Ciencias Médicas (INFOMED) lcsilva@infomed.sld.cu : http://lcsilva.sbhac.net