1 / 19

Closing loopholes in Bell tests of local realism

Closing loopholes in Bell tests of local realism. Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany. Johannes Kofler. Workshop “Quantum Physics and the Nature of Reality ” International Academy Traunkirchen , Austria 22 November 2013. Overview.

Download Presentation

Closing loopholes in Bell tests of local realism

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Closing loopholes in Bell tests of local realism Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany Johannes Kofler Workshop “Quantum Physics and the Nature of Reality” International Academy Traunkirchen, Austria 22 November 2013

  2. Overview • Assumptions in Bell’s theorem • Realism • Locality • Freedom of choice • Closing loopholes • Locality • Freedom of choice • Fair sampling • Coincidence time • Conclusion and outlook

  3. Acknowledgements Sae Woo Nam Marissa Giustina Bernhard Wittmann Sven Ramelow Rupert Ursin Anton Zeilinger Jan-Åke Larsson

  4. History Quantum mechanics and hidden variables • Kopenhagen interpretation • (Bohr, Heisenberg, etc.) • 1932 Von Neumann’s (wrong) proof of non-possibility of hidden variables • 1935 Einstein-Podolsky-Rosen paradox • 1952 De Broglie-Bohm (nonlocal) hidden variable theory • Bell’s theorem on local hidden variables • First successful Bell test • (Freedman & Clauser) Bohr and Einstein, 1925

  5. Local realism Classical world view: • Realism:Physical properties are (probabilistically) defined prior to and independent of measurement • Locality:No physical influence can propagate faster than the speed of light External world Passive observers

  6. Bell’s Assumptions Bell’s assumptions 1 Realism: Hiddenvariables determine global prob. distrib.: p(Aa1b1, Aa1b2, Aa2b1,…|λ) 2 Locality: (OI) Outcomeindependence: p(A|a,b,B,λ) = p(A|a,b,λ) & viceversaforB (SI) Setting independence:p(A|a,b,λ) = p(A|a,λ) & viceversaforB  factorizability: p(A,B|a,b,λ) = p(A|a,λ)p(B|b,λ) 3 Freedom ofchoice:(a,b|λ) = (a,b)  (λ|a,b) = (λ) 3 J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, p. 243 (2004) 1 J. F. Clauserand A. Shimony, Rep. Prog. Phys. 41, 1881 (1978) 2J. S. Bell, Physics1, 195 (1964)

  7. Bell’s Assumptions Bell’s theorem Realism + Locality + Freedom of choice + X Bell’s inequality Bell’s original derivation1 only implicitly assumed freedom of choice: explicitly: A(a,b,B,λ) B(a,b,A,λ) locality freedom of choice (λ|a,b) A(a,λ) B(b,λ) – (λ|a,c) A(a,λ) B(c,λ) implicitly: Remarks: original Bell paper1: X = “Perfect anti-correlation” CHSH2: X = “Fair sampling” 1J. S. Bell, Physics 1, 195 (1964) 2J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt,PRL 23, 880 (1969)

  8. Loopholes • Why important? • – quantum foundations • – security of entanglement-based quantum cryptography Loopholes: maintain local realism despite exp. Bell violation • Three main loopholes: • Locality loophole • hidden communication between the parties • closed for photons (19821,19982) • Freedom-of-choice loophole • settings are correlated with hidden variables • closed for photons (20103) • Fair-sampling (detection) loophole • measured subensembleis not representative • closed for atoms (20014), superconducting qubits (20095) and for photons (20136) E 1 A. Aspect et al., PRL 49, 1804 (1982) 2 G. Weihset al., PRL 81, 5039 (1998) 3 T. Scheidlet al., PNAS 107, 10908 (2010) 4 M. A. Rowe et al., Nature 409, 791 (2001) 5 M. Ansmannet al., Nature 461, 504 (2009) 6M. Giustinaet al., Nature 497, 227 (2013)

  9. Locality & freedom of choice Tenerife b,B La Palma E,A E La Palma Tenerife a Locality: Ais space-like sep.from band B Bis space-like sep.from aand A p(A,B|a,b,) = p(A|a,)p(B|b,) Freedom of choice: aand bare random aand b are space-like sep. from E p(a,b|) = p(a,b) T. Scheidl, R. Ursin, J. K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, 10908 (2010)

  10. Fair-sampling loophole • Fair sampling: Local detection efficiency depends only on hidden variable: A = A(), B = B()  observed outcomes faithfully reproduce the statistics of all emitted particles • Unfair sampling: Local detection efficiency is setting-dependent • A = A(a,), B = B(b,)  fair-sampling (detection) loophole1 • Local realistic models2,3 • Reproduces the quantum predictions of the singlet state with detection efficiency 2/3 • Detection efficiency is not optional in security-related tasks (device-independent quantum cryptography): faked Bell violations4 1 P. M. Pearle, PRD 2, 1418 (1970) 2F. Selleriand A. Zeilinger, Found. Phys. 18, 1141 (1988) 3 N. Gisin and B. Gisin, Phys. Lett. A 260, 323 (1999) 4I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, C. Kurtsiefer, PRL 107, 170404 (2011)

  11. CHSH vs. CH/Eberhard inequality • CHSH inequality1 • two detectors per side • correlation functions • fair-sampling assumption used in derivation • requires indep. verific. of tot > 82.8 %2 • maximally entangled states optimal • CH3 (Eberhard3) inequality • only one detector per side • probabilities (counts) • no fair-sampling assumption in the derivation • no requirement to measure tot • impossible to violate unless tot > 66.7 % • non-max. entangled states optimal 1 J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969) 2 A. Garg and N. D. Mermin, PRD 35, 3831 (1987) 3J. F. Clauser and M. A. Horne, PRD 10, 526 (1974) 4P. H. Eberhard, PRA 47, 747 (1993)

  12. Transition-edge sensors • Working principle • Superconductor (200 nm thick tungsten film at 100 mK) at transition edge • Steep dependence of resistivity on temperature • Measurable temperature change by single absorbed photon • Superconducting transition-edge sensors1 • Characteristics • High efficiency > 95 %2 • Low noise < 10 Hz2 • Photon-number resolving 1 Picture from: Topics in Applied Physics 99, 63-150 (2005) 2 A. E. Lita, A. J. Miller, S. W. Nam, Opt. Express 16, 3032 (2008)

  13. Setup • Sagnac-type entangled pair source • Non-max. entangled states • Fiber-coupling efficiency > 90% • Filters: background-photon elimination > 99% M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013)

  14. Experimental results • Violation of Eberhard’s inequality1 • 300 seconds per setting combination • Collection efficiency tot 75% • No background correction etc. • Photon: only system for which all main loopholes are now closed • (not yet simultaneously) 1 M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature 497, 227 (2013) 2J. K., S. Ramelow, M. Giustina, A. Zeilinger, arXiv:1307.6475 [quant-ph] (2013)

  15. The coincidence-time loophole • Fair coincidences: Local detection time depends only on hidden variable: TA= TA(), TB= TB() identified pairs faithfully reproduce the statistics of all detected pairs • Unfair coincidences: Detection time is setting-dependent • TA = TA(a,), TB = TB(b,)  coincidence-time loophole1 • Local realistic model: • Standard “moving windows” technique: coincidence if |TA(a,) –TB(b,)|  ½ • a2b2 coincidences are missed, CH/Eberhard violated 1 J.-Å. Larsson and R. Gill, EPL 67, 707 (2004)

  16. Closing the coincidence-time loophole • a) Moving windows • coincidence-time loophole open • b) Predefined fixed local time slots • coincidence-time loophole closed • c) Triple window for a2b2coinc. • coincidence-time loophole closed J.-Å. Larsson, M. Giustina, J. K., B. Wittmann, R. Ursin, S. Ramelow, arXiv:1309.0712 (2013)

  17. Application to experimental data • Triple-window method • coinc.-time loophole closed • Fixed time slots • coinc.-time loophole closed • Moving windows • coinc.-time loophole open •  simultaneous closure of fair-sampling (detection) and coincidence-time loophole J.-Å. Larsson, M. Giustina, J. K., B. Wittmann, R. Ursin, and S. Ramelow, arXiv:1309.0712 (2013)

  18. Conclusion and outlook • Loophole: How to close: Locality space-like separate A & b,B and B & a,A a,b random Freedom of space-like separate E & a,b choicea,b random Fair sampling use CHSH and also show  > 82.8% (detection)or use CH/Eberhard Coincidence- use fixed time slots timeor window-sum method • Photons: each of the loopholes has been closed, albeit in separate experiments • Loophole-free experiment still missing but in reach

  19. Loopholes hard/impossible to close • Futher loopholes: Superdeterminism: Common cause for E and a,b Wait-at-the-source: E is further in the past; pairs wait before they start travelling Wait-at-the setting: a,bfuther in the past; photons used for the setting choice wait before they start traveling Wait-at-the-detector: A,B are farther in the future, photons wait before detection, “collapse locality loophole” Actions into the past … E

More Related