1 / 41

Heavy-ion dynamics at the Fermi energy A theoretical point of view

Explore the theoretical aspects of heavy-ion dynamics at Fermi energy from Coulomb barrier to ~20 MeV/u, including global properties, collision processes, and early energy transformation.

jeralde
Download Presentation

Heavy-ion dynamics at the Fermi energy A theoretical point of view

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Heavy-ion dynamics at the Fermi energy A theoretical point of view RuđerBošković Institute – SUBATECH collaboration Zoran Basrak Laboratory for heavy-ion physics Division of Experimental Physics RuđerBošković Institute, Zagreb, Croatia EWON Town Meeting, May 10 –12, 2007, Prague, Czek Republic

  2. Talk overview • Introduction • The Fermi energy & BDC • QP properties • Mid-rapidity emission • Early energy transformation • Conclusions • Outlook

  3. From Coul. barrier to ~20 MeV/u Global properties • Mean fieldgovernscollision dynamics • The Pauli blocking “freezes”“hard” .NNcollisions Central collisions: Fusion Peripheral collisions: Binary Processes sTOT= sFUS+ s B.P.

  4. The Fermi energy region Expected global properties • Weakened influence of the mean field • With increasing energy larger phase . space opens to the NNcollisions sTOT= sFUS+ s B.P. Still holds: sTOT~ sFUS Till early 90’s believed: Hot nuclei !!!

  5. Binary Dissipative Collisions – BDC opens around the Fermi energy Irrespectively of - event centrality - system size - system asymmetry V.Metivier et al. (INDRA Collaboration), Nucl. Phys. A672 (2000) 357. sTOT< 0.05 sFUS

  6. BDC reaction mechanism A two-stage process: • A compact quickly evolving early .reaction phase (prior to scission) • By birth of the primary QP & QT .starts the second reaction phase

  7. QP emission in BDC’s • Reconstructed primary QP massapproxim.. equal to the projectile mass J. Peter et al., Nucl. Phys.A593 (1995) 95.

  8. Ar (95 MeV/u) Ni QP emission in BDC’s • Reconstructed primary QP massapproxim.. equal to the projectile mass • Thus obtained primary QP extremely hot Y.-G. Ma et al., Phys. Lett. B390 (1997) 41. J. Peter et al., Nucl. Phys.A593 (1995) 95.

  9. Ar (95 MeV/u) Ni QP emission in BDC’s • Reconstructed primary QP massapproxim.. equal to the projectile mass • Thus obtained primary QP extremely hot Y.-G. Ma et al., Phys. Lett. B390 (1997) 41. J. Peter et al., Nucl. Phys.A593 (1995) 95.

  10. Ar ( 65 MeV / u ) Al Dynamical emission component Landau-Vlasov model simulation Ph. Eudes, Z. Basrak and F. Sebille, Phys. Rev. C56 (1997) 2003.

  11. Ar ( 65 MeV / u ) Al Ar ( 65 MeV / u ) Al Dynamical emission component Landau-Vlasov model simulation Ph. Eudes, Z. Basrak and F. Sebille, Phys. Rev. C56 (1997) 2003.

  12. Ar ( 65 MeV / u ) Al Ar ( 65 MeV / u ) Al Dynamical emission component Landau-Vlasov model simulation Ph. Eudes, Z. Basrak and F. Sebille, Phys. Rev. C56 (1997) 2003.

  13. Z dynam emiss = 100 Z targ + Z proj Dynamical emission component Dem (%) = F. Haddad et al., Phys. Rev. C60 (1999) 031603.

  14. Ar ( 65 MeV / u ) Al Statistical emission component Landau-Vlasov model simulation Thegeniune primary QP emission

  15. Ar ( 65 MeV / u ) Al Ar ( 65 MeV / u ) Al Statistical emission component Landau-Vlasov model simulation Thegeniune primary QP emission Ph. Eudes and Z. Basrak, Eur. Phys. J. A 9(2000) 207. D. Cussol et al., Nucl. Phys. A561 (1993) 298. J. Peter et al., Nucl. Phys.A593 (1995) 95.

  16. QP emission in BDC’s Ar (95 MeV/u) + Ni INDRA experiment analyzed in the 3 sources assumption Proton reduced rapidity distribution experiment 3 sources analyses D. Dore et al. (INDRA Collaboration), Phys. Lett. B491 (2000) 15.

  17. Mid-rapidity emission in BDC’s pre-scission post-scission max. compression Configuration space local equilibration max. compression Impulse space local equilibration

  18. Mid-rapidityemission • pre-scissionemission Mid-rapidity emission in BDC’s pre-scission post-scission max. compression Configuration space local equilibration max. compression Impulse space local equilibration

  19. Etot = Ecollect + Eintrin Eintrin = Eexcit + Epotent Early energy transformation Decompression followed by abundant emission and fast system cooling.

  20. Eexcit Eth /A Etot = Ecollect + Eintrin Epotent Ecompr /A Eintrin = Eexcit + Epotent Early energy transformation I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. - Asys = ~70 - ~250 nucl - Aproj:Atarg = 1:1 – 1:5 - brel = 0, … (0.1) … 1 Decompression followed by abundant emission and fast system cooling.

  21. Heat & compression – Maximal compression at ~25 fm/c – In each volume cell a local equilibration at ~35 fm/c – System scission at ~55 fm/c I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26.

  22. Heat & compression – Maximal compression at ~25 fm/c – In each volume cell a local equilibration at ~35 fm/c – System scission at ~55 fm/c I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26.

  23. Heat & compression – Maximal compression at ~25 fm/c – In each volume cell a local equilibration at ~35 fm/c – System scission at ~55 fm/c I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. Despite of the establishment of a local equili-brium throughout the compact system the (Eth/A)sys and (Ath/A)proj differ substantially: Global equilibrium is far from being reached!

  24. Reaction geometry Maxima of the Eth/A and Acompr/A show as a function of reaction centrality strong geometrical effects. I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26.

  25. Reaction geometry Maxima of the Eth/A and Acompr/A show as a function of reaction centrality strong geometrical effects. I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. Observed feature is in the spirit of the participant-spectator picture.

  26. Reaction geometry Maxima of the Eth/A and Acompr/A show as a function of reaction centrality strong geometrical effects. I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. Observed feature is in the spirit of the participant-spectator picture. An interplay of the NN collisions and the Pauli principle in the overlap zone.

  27. c.m. E proj A targ A proj Eavail = A proj (A targ + A proj ) 2 Head-on collisions Dependence on available energy I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26.

  28. c.m. E proj A targ A proj Eavail = A proj (A targ + A proj ) 2 Head-on collisions Dependence on available energy I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. A universal linear proportionality law proves the eminent role of “hard” NN collisions.

  29. Ratio of thermal energy maxima Dependence of relative sub-systems Eth/A on incident energy for head-on collisions Projectile ratio = (Eth/A)proj (Eth/A)sys Target ratio = I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. (Eth/A)targ (Eth/A)sys

  30. Ratio of thermal energy maxima Dependence of relative sub-systems Eth/A on incident energy for head-on collisions Projectile ratio = (Eth/A)proj (Eth/A)sys Target ratio = I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. (Eth/A)targ (Eth/A)sys A symmetric system

  31. Ratio of thermal energy maxima Dependence of relative sub-systems Eth/A on incident energy for head-on collisions Projectile ratio = (Eth/A)proj (Eth/A)sys Target ratio = I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. (Eth/A)targ (Eth/A)sys An asymmetric system

  32. Ratio of thermal energy maxima Dependence of relative sub-systems Eth/A on incident energy for head-on collisions Projectile ratio = (Eth/A)proj (Eth/A)sys Target ratio = I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. (Eth/A)targ (Eth/A)sys Increasingly asymmetric systems

  33. Ratio of thermal energy maxima Dependence of relative sub-systems Eth/A on incident energy for head-on collisions Projectile ratio = (Eth/A)proj (Eth/A)sys Target ratio = I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. (Eth/A)targ (Eth/A)sys Increasingly asymmetric systems

  34. Ratio of thermal energy maxima Dependence of relative sub-systems Eth/A on incident energy for head-on collisions • The reaction geo-metry is important in intermediate E HIC. • The Fermi energy is a transient region where the main reac-tion mechanism un-dergoes a fundamen- I. Novosel, Z. Basrak et al., Phys. Lett. B625 (2005) 26. tal change from the fusion-deep inelastic into the BDC – partic.-spect,(fireball)-like behavior.

  35. Conclusions • Mid-rapidity emissionis dominated by the pre-scissiondynamicalcontribution • Maximal heat and pressure generated in a collision closely follow reaction geometry • Head-on collisionsobey a universallinear dependenceon the available c.m. energy

  36. Conclusions • Mid-rapidity emissionis dominated by the pre-scissiondynamicalcontribution • Maximal heat and pressure generated in a collision closely follow reaction geometry • Head-on collisionsobey a universallinear dependenceon the available c.m. energy A crucial role of “hard” NN collisions

  37. Conclusions • Mid-rapidity emissionis dominated by the pre-scissiondynamicalcontribution • Maximal heat and pressure generated in a collision closely follow reaction geometry • Head-on collisionsobey a universallinear dependenceon the available c.m. energy A crucial role of “hard” NN collisions Explains theapparent controversyon the quickly establishedlocal equilibriumthroughout the compact system and completelack of global equilibration

  38. Outlook TRacing EQuilibration by ISospin (the LNS experiment C-71, spokesperson Z. Basrak) Landau-Vlasov model simulation of the isospin asymmetric 48Ca + 40Ca reaction at 40 MeV/u N/Z ratio of the quasi-projectile as a function of b

  39. N/ZQP=1.27 – 1.31 Outlook TRacing EQuilibration by ISospin (the LNS experiment C-71, spokesperson Z. Basrak) Landau-Vlasov model simulation of the isospin asymmetric 48Ca + 40Ca reaction at 40 MeV/u for b < 2 fm The same system at a similar E in the last month GANIL experiment E-503 (spokesperson A. Chibihi) N/Z ratio of the quasi-projectile as a function of b

  40. Heavy-ion dynamics at the Fermi energy A theoretical point of view RuđerBošković Institute – SUBATECH collaboration Zoran Basrak Laboratory for heavy-ion physics Division of Experimental Physics RuđerBošković Institute, Zagreb, Croatia EWON Town Meeting, May 10 –12, 2007, Prague, Czek Republic

More Related