200 likes | 331 Views
Institute for Optical Monitoring is the basic scientific organization in SB RAS that carries out and co-ordinates interdisciplinary investigations of natural and climate changes in Siberia
E N D
Institute for Optical Monitoring is the basic scientific organization in SB RAS that carries out and co-ordinates interdisciplinary investigations of natural and climate changes in Siberia The main research field of the Institute: scientific and technological foundations for monitoring, simulation and forecasting climate and ecosystem changes under impact of natural and anthropogenic factors Institute departments: Department of Geophysical Research (Prof. V.A. Krutikov) + Siberian Climate and Ecological Observatory Department of Scientific Instrument-Making (Prof. A.A. Tikhomirov) + Production and Technological Sharing Center Department of Ecological Research (S.A. Krivets) + KEDR Selection Station International Siberian Center for Environment Research and TrainingSB RAS (Prof. E.P. Gordov) Post-graduate schoolwith the followingspecialities: atmospheric and oceanic physics, optics, ecology, optical and electronic devices, mathematical simulation, geo-ecology Branches of sub-faculties: TSU (two) and TUCSR (two)
Climate and ecological monitoring of Siberia as an interdisciplinary experimental field studies is a new strategy in studying contemporary natural and climate changes Spiral linein development of cliamte and ecological monitoring Supporting research projects 1. Climate and ecological monitoring of Siberia. Carried out since 1993 in the framework of regional research program «Siberia». Co-ordinator:Corr. member of RAS M.V. Kabanov 2. Problems of climate and ecological changes Carried out since 1997 in the framework of federal integrated program «Academic university». Co-ordinators: Corr. member of RAS M.V. Kabanov (IOM), Prof. O.G. Zadde (TSU) 3. Comprehensive monitoring of Vast Vasyugan Marsh: investigation of contemporaty state and development processes. Carried out since 2000 as integrated (interdisciplinary) projects of SB RAS. Co-ordinator: Corr. member of RAS M.V. Kabanov. 4. Siberian geosphere-biosphere program. Carried out since 2003 as integrated (interdisciplinary) projects of SB RAS. Co-ordinators: Corr. member of RAS I.M. Gadzhiev, Corr. member of RAS M.V. Kabanov, Corr. member of RAS V.A. Snytko
Earth system evolution under impact of natural and anthropogenic factors: stages of factor-formation due to natural and cliamte changes First stage -period from Earth appearance to 3 billion years ago Oxygen content in the atmosphere no more than 0.02% Ammonia and carbon atmosphere (CO2, CH4, NH3, HCl, H2S, SO3 ) Surface temperature 65-80 C Monadiform organisms appear in «oxygen-free» atmopshere Second stage - period from 3 billion to 1 billion years ago Oxygen content in the atmosphere increases up to 1% Main Earth crust platforms and their sedimentary cover develop Living organisms having oxygen respiration appear Third stage -period from 1 billion to 65 million years ago Gas composition of the atmopshere approaches the present-day one Climate zoning with wide biological diversity appears Evolution of the atmopshere, hydrosphere, and lithosphere with the periods of deep fall of temperature «Great» dying out of many marine and land organisms including dinosaurs Surface temperature in Siberia is near +12 C
Earth system evolution under impact of natural and anthropogenic factors: stages of factor-formation due to natural and cliamte changes Fourth stage -period from 65 million years ago to Common Era Variations of gas composition of the atmosphere under impact of natural processes(geologic, biogenic, cosmophysical) Appearance of continental and oceanic glaciation in Nothern hemisphere Delopment of renewed specific biological diversity including human being Significant variations of Earth climate Contemporary stage - new («anthropogenic») stage in the Earth system evolution Dynamic growth of the Earth population and anthropogenic impacts Instrumented observations record acceleration of global environmental and climatechanges by the end of 20th century
Natural and climate changes observed in Siberia have increased rate and mesoscale spatial inhomogeneity as compared to globally averaged ones Spatial distribution of linear trend of annual mean temperature (deg./10 years)
Smoothing of latitudinal climate zoning is observed in northen latitudes in Siberia : during recent decades the regions having accelerated warming became geographically close to those ones having anomalous low temperature regime January. Fragment from USSR Climate Atlas (Moscow, 1960)
Wavelet fransform of centennial series for annual mean surface temperature in the number of Siberian cities reveals both periodocities in temperature changes with several time scales and evolution of these temperature periodicities Evolution of surface temperature periodicities in Tomsk
Index Periodi-cities TO Omsk TT Tomsk TK Krasnoyarsk TI Irkutsk TO 5 1 0.850.38 0.610.49 11 1 0.880.37 0.720.44 0.670.46 22 1 0.890.36 0.700.45 0.590.49 30 1 0.970.32 0.740.43 0.950.33 Ap 30 0.670.52 0.620.54 0.740.49 0.570.56 W 30 0.800.41 0.670.38 0.730.44 0.670.38 Correlation analysis of the temperature periodicities revealed shows that correlation coefficients between Siberian cities are the most high for 30-year periodicity and they decrease for more short periodicities (5, 11 and 22 years). These correlation coefficients are comparable to correlation coefficients for 30-year periodicity of geomagnetic activity Аp and Wolf number W Correlation coefficients for periodicities
Comparison of evolution trajectories as sums of monthly mean temperatures for Omsk and Krasnoyarsk allowed to separate quantitatively anthropogenic (technogenic) signal corresponding to filling up Krasnoyarsk water reservoir in 1967-1970 Sum of Monthly mean temperatures, оС Evolution trajectories of surface temperature
Analysis of evolution trajectories as cummulative sums with substracted linear trend allowed us to isolate within the century several stages of cliamte changes in Tomsk. These stages have different rates and variance that decreases by the end of the century (by 23% for temperature and by 9% for precipitation) «sStraightened» evolution trajectories for temperature and precipitation
Analysis of evolution trajectories as cummulative sums with subtracted linear trend allowed us to isolate within the century several stages of cliamte changes in Tomsk. These stages have different rates and variance that decreases by the endof the century (by 23% for temperature and by 9% for precipitation) Isolated stages of climate changes and parameters’ variances
Analysis of 2-D phase patterns for 5-year ensembles of states of regional natural and climate system allowed to reveal an increasing arid dynamics of the forest-steppe zone of Western Siberia Two-dimensional phase pattern of states of regional natural and cliamte system (Tomsk)
The regularities revealed put new problems on scientific monitoring of mesoscale natural-territorial complexes such as Vast Vasyugan Marsh Difference of territotry-averaged temperatures ΔT =(TТ – ТБ)oC Vast Vasyugan Marsh
The regularities revealed put new problems on scientific monitoring of mesoscale natural-territorial complexes such as Vast Vasyugan Marsh Mercury distribution in depth of peat deposit at station «Vasyugan’e» Primary vegetable remains brown mosses; horsetail; herbaceous remains Low sedge species; tall sedge species; bog been;
Analysis of field instrumented observations revealed priorities in development of new methods and devices at IOM SB RAS Self-contained meteorological complex (AMK) with the use of ultrasonic thermoanemometer;
Multichannel Geophysical Recorder (MGR) recording pulses of H and E components in super low radio frequency region • PURPOSE • recording electromagnetic processes • in the Earth crust and atmosphere • express tracing of oil and gas deposits • express analysis of seismic risk Terminal «Archive» 64 Мbytes Н1 radio pulses Н2 radio pulses Е-component seismic (acoustic) channel Slots for 4 channels (reserve)
Solid-state lasers Ho:YLF (2.10 mm) Er:YAG (2.79 mm) Nd:YAG (1.06 mm) Nd:YAG (0.53 mm) k +l output 2.45 -14.7 mm 3.48 -14.1 mm 1.15 - 13.8 mm 0.56 - 11.5 mm СО2 lasers 200 lines (4.3-4.5; 9.2-10.8 mm) i +i ;i j output 50000 lines (2-12 mm) Femtosecond lasers Ti:sapphire (0.7-1.1 mm) Nd:YAG (1.06 mm) Cr:forsterite(1.25 -1.32 mm) k +l output 1.19 - 14.1 mm 1.15 - 13.8 mm 1.46 - 14.1 mm ZnGeP2, HgGa2S4, Hg1-xСdxGa2S4, LiInS2, LiInSe2, AgGaGeS4 LiInS2, LiInSe2, AgGaGeS4 ZnGeP2, HgGa2S4, Hg1-xСdxGa2S4 Generators of harmonics and combination frequencies Optical laser frequency converters for remote gas analysis Parametric oscillators Travelling wave generators
Problems in regional monitoring of contemporary natural and climate changes 1. Conceptual monitoring problems 1) Organization of comprehensive monitoring (combination of hydrometeorological, actinometric, atmospheric-electrical, ecological, geophysical, etc.). 2) Organization of monitoring of both states and changes of natural and climate system (regularities and models) 3) Account for nature- society interaction (relation between natural and anthropogenic factors) 2. Instrumentation problems of monitoring 1) New devices for recording parameters and their changes 2) Computerization of observations (New recording principles) 3) Sertification of instrumented observations (devices and techniques) 3. Technological problems of monitoring 1) Geo-information provision of ground observations 2) Matching ground and aerospace monitoring (three-level one) 3) Matching observation results obtained both in expedition and monitoring regime
Почти философские вопросы по проблемам климата 1.Математическая теория климата исходит из определения: климат – статистический ансамбль состояний, проходимых климатической системой за 30 лет. Вопрос: а как называть наблюдаемые изменения климата за последние десятилетия (в пределах 30 лет)? или это изменения не климата, а чего-то другого? 2.При математическом моделировании климата используется около 109 параметров, многие из которых не измеряются и характеризуют не только состояние климатической системы, но и погодообразующие процессы. Вопрос: столько и каких параметров необходимо и достаточно для характеристики состояния и прогнозируемой динамики климатической системы под воздействием физических, биологических, химических и антропогенных факторов?
Почти философские вопросы по проблемам климата 3.Климат определяется не только величиной параметров, характеризующих климатическую систему, но и сезонной последовательностью этих величин (другое определение климата – многолетнийрежим погоды). Вопрос: нельзя ли рассматривать климат как сложную и изменяющуюся по структуре систему из погодных элементов (многодневных кластеров и фракталов погод погоды) подобно сложному химическому соединению, состоящему из простых химических элементов таблицы Менделеева? 4.Математические модели климата основываются на общих законах природы, а выявляемые эмпирические закономерности используются пока только для верификации этих моделей. Вопрос: не пришла ли пора начать создание моделей климата на основе эмпирических закономерностей подобно тому, как выводились многие законы физики (законы Кеплера, законы Ньютона, уравнения Максвелла и др.), т.е. пройти встречный путь к математическим моделям и развивать комплексный климато-экологический мониторингв соответствии с этой задачей?