390 likes | 498 Views
In vitro biochemical circuits. The synthetic biology problem The experimental system we are investigating A general problem it motivates A specific problem to tackle. Leader: Erik Winfree co-leader: Jongmin Kim. In vitro biochemical circuits. The synthetic biology problem
E N D
In vitro biochemical circuits The synthetic biology problem The experimental system we are investigating A general problem it motivates A specific problem to tackle Leader: Erik Winfree co-leader: Jongmin Kim
In vitro biochemical circuits • The synthetic biology problem Reductionism: system behavior from component characteristics The complexity gap Synthesis of in vitro biochemical circuits • The experimental system we are investigating • A general problem it motivates • A specific problem to tackle Leader: Erik Winfree co-leader: Jongmin Kim
RNAP RNA ? RNase DNA In vitro biochemical circuits • The synthetic biology problem • The experimental system we are investigating Circuits of rationally-designed transcriptional switches • A general problem it motivates • A specific problem to tackle [R] Leader: Erik Winfree co-leader: Jongmin Kim R [I]tot DA [A]tot promoter I A R
In vitro biochemical circuits • The synthetic biology problem • The experimental system we are investigating • A general problem it motivates There are many subspecies and side reactions. How do we obtain a simplified model for analysis? • A specific problem to tackle OFF ON Leader: Erik Winfree co-leader: Jongmin Kim ON OFF By RNA polymerase By RNase
0 1 1 0 0 1 In vitro biochemical circuits • The synthetic biology problem • The experimental system we are investigating • A general problem it motivates • A specific problem to tackle Phase space analysis of simple circuits: a bistable switch and a ring oscillator Leader: Erik Winfree co-leader: Jongmin Kim e.g. “cloud size”
OFF ON ON OFF By RNA polymerase By RNase Networks of transcriptional switches
Michaelis-Menten reactions Michaelis-Menten reactions lead to competition for - RNA polymerase by DNA templates - RNase by RNA products Can have interesting consequences like Winner-take-all network
8 6 27 8 5 hairpin 27 Signal Sequence design TCATGGAACTACAACAGGCAACTAATACGACTCACTATAGGGAGAAGCAACGATACGGTCTAGAGTCACTAAGAGTAATACAGAACTGACAAAGTCAGAAA GTGTTCCT AGTACCTTGATGTT GTCCGTTGATTAT GCTGAGTGATATCCC TC TTCG TTGCTATG CCAGATCTCAGTGATTCT CATTAT GTCTTGACTG TTTC AGTCTTT Promoter A A A GGGAGA GTCAG CTGAC AGCAACGATACGGTCTAGAGTCACTAAGAGTAATACAGAA AAA
Components D12 ATTGAGGTAAGAAAGGTAAGGATAATACGACTCACTATAGGGAGAAACAAAGAACGAACGACACTAATGAACTACTACTACACACTAATACTGACAAAGTCAGAAA TTTC TGACTTTGTCAGTATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTCG TTCTTTGTTTCTCCCTATAGTGAGTCG TATTATCCTTACCTTTCTTACCTCAATCTTCGCCT A2 D21 CTAATGAACTACTACTACACACTAATACGACTCACTATAGGGAGAAGGAGAGGCGAAGATTGAGGTAAGAAAGGTAAGGATAATACTGACAAAGTCAGAAA TATTAGTGTGTAGTAGTAGTTCATTAGTGTCGTTC TTTCTGACTTTGTCAGTATTATCC TT ACC TTT C TT ACCTCAATCTTCGCCTCTCCTTCTCCCTATAGTGAGTCG A1 RNAP RNase H RNase R
Transition curve – DNA inhibitor T7 RNAP RNase H(1U) RNase R(200nM) I2 D21=100nM A=500nM Inhibitor 2 Inh2 add DNA Sw21 dI1 Inh1 Atot
Transition curve – RNA inhibitor T7 RNAP RNase H(0.7U) RNase R(150nM) I2 D13=0-60nM D21=80nM A=400nM Inhibitor 2 Sw21 Inhibitor 1 Inh2 Inh1 Atot I1 Sw13
Fluorescence OFF High signal ON Low signal
Bistable switch Sw21 Inh1 Inh2 Sw12
Bistable switch Sw21 ON Sw12 ON
Summary • Need better quantitative understanding • make a better system • understand how messy system works Cells have misfolded, mutated species all the time Neural networks have distributed architecture
I I A A D D Inhibitor interacting with Switch/Enzyme complex RNAP RNAP I + RDA -> RD + AI
I A A D D Abortive transcripts (Messiness #1) RNAP RNAP R + DA <-> RDA -> R + DA + I60, I45, I14 ,I8
RNase R needs to clean up RNase R I8, I14 RNase R Rr + In <-> RrIn -> Rr
A2 D21 D21 Activator crosstalk A2 D21 + A2 -> D21A2
Nicked at -12/-13 has no crosstalk D21+A1 D21+A2 D21 T7 RNAP D21=100nM, 500nM D21 I2 A1 or A2 Stoichiometric amounts of activator Transcription level (%)
I A Incomplete degradation by RNaseH (Messiness #2) RNase H I45 hp RNase H A RhAI -> Rh + A + In + hp
RNase H can keep going RNase H I45 Rh + AIn <-> RhAIn -> Rh + AIm A RNase H I27 I27 RNase H A A RNase H RNase H I14 I14 A A
Lots of truncated RNA products R(0nM) R(100nM) R(200nM) R(400nM) T7 RNAP RNase H(1.5U) RNase R 60 120 180 60 120 180 60 120 180 60 120 180 D21=30nM A=150nM I2 Inh2 sI2 Sw21 I2 hairpin ?
I I Activator-activator or Inhibitor-inhibitor complex I I I + I -> II
RNA extension by RNAP RNAP I I’ RNAP R + I -> RI -> R + I’
Extended RNA species R(0nM) R(100nM) R(200nM) R(400nM) T7 RNAP RNase H(1.5U) RNase R 60 120 180 60 120 180 60 120 180 60 120 180 Extended I2 complex D21=30nM A=150nM I2 Inh2 Sw21
Enzyme life-time RNAP R -> ø
I A A D D NTP/buffer exhaustion RNAP CTP ATP GTP UTP RNAP RDA + 60NTP -> R+ DA + I
I2 level is stable (up to ~6hr) R(0nM) R(100nM) R(200nM) R(400nM) T7 RNAP RNase H(1.5U) RNase R 60 120 180 60 120 180 60 120 180 60 120 180 D21=30nM A=150nM I2 Inh2 Sw21
A RNase degrading DNA RNase H RNase H Rh + A -> RhA -> Rh
DNA bands are stable R(0nM) R(100nM) R(200nM) R(400nM) T7 RNAP RNase H(1.5U) RNase R 60 120 180 60 120 180 60 120 180 60 120 180 D21=30nM A=150nM DNA sense DNA temp Inh2 BH-A Sw21
I A A D D Initial burst RNAP RNAP RDA -> R + DA + I k(t)
Model choice (basic) D + A <-> DA A + I <-> AI DA + I <-> DAI -> D + AI R + DA <-> RDA -> R + DA + I R + D <-> RD -> R + D + I Rh + AI <-> RhAI -> Rh + A Rr + I <-> RrI -> Rr
Model choice (with messiness) D + A <-> DA A + In <-> AIn DA + In <-> DAIn <-> D + AIn R + DA <-> RDA -> R + DA + In R + DAI1n <-> RDAI1n -> R + DAI1n + I2n’ R + D <-> RD -> R + D + In Rh + AIn <-> RhAIn -> Rh + AIm (+ hp) Rr + In <-> RrIn -> Rr
Questions • Bistable circuit phase diagram • Oscillator circuit phase diagram • Bistable circuit model reduction • Oscillator circuit model reduction • Transcription switch input/output model reduction