890 likes | 1.03k Views
ICALP 2012. Self-Assembly with Geometric Tiles. Bin Fu University of Texas – Pan American Matt Patitz University of Arkansas Robert Schweller ( Speaker ) University of Texas – Pan American Robert Sheline University of Texas – Pan American. Outline.
E N D
ICALP 2012 Self-Assembly with Geometric Tiles • Bin Fu University of Texas – Pan American Matt Patitz University of Arkansas Robert Schweller (Speaker) University of Texas – Pan American Robert Sheline University of Texas – Pan American
Outline • Basic Tile Assembly Model • Geometric Tile Assembly Model • Basic Model • Planar Model • More efficient n x n squares • Future Directions
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = Glue Function: Tile Set: Temperature:
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d a b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d a b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d a b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d a b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e d a b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T = e x d a b c
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e e x d a b c G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T =
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e e x x d a b c G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T =
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e x e x x d a b c G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T =
Tile Assembly Model (Rothemund, Winfree, Adleman) a b c x d e x x e x x d a b c G(y) = 2 G(g) = 2 G(r) = 2 G(b) = 2 G(p) = 1 G(w) = 1 t = 2 T =
Geometric Tiles Geometry Region
Geometric Tiles Geometry Region
Geometric Tiles Compatible Geometries
Geometric Tiles Incompatible Geometries
Geometric Tiles Incompatible Geometries
n x n Results Tile Complexity Upper bound Lower bound Normal Tiles* Geometric Tiles Planar Geometric Tiles [*Winfree, Rothemund, Adleman, Cheng, Goel,Huang STOC 2000, 2001]
n x n Squares, root(log n) tiles 0 1 0 1 1 log n
Assembly of n x n Squares 1 1 1 1 1 1 1 1 1 0 n 0 1 1 0 0 0 1 0 1 1 log n
Assembly of n x n Squares log n 0 1 0 1 1
Assembly of n x n Squares -Build thicker 2 x log n seed row 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 2 log n
Assembly of n x n Squares -Build thicker 2 x log n seed row -But… can’t encode general binary strings: 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 -All the same 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 2 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 log n
Assembly of n x n Squares Key Idea: Geometry Decoding Tiles A3 A2 A1 A0 B3 B2 B1 B0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 2 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 log n
Assembly of n x n Squares A3 A3 A3 A2 A2 A2 A1 A1 A0 A0 B3 B3 B3 B2 B2 B2 B1 B1 B1 B1 B0 B0 B0 B0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 2 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 log n
Assembly of n x n Squares A3 A3 A3 A2 A2 A2 A1 A1 A0 A0 B3 B3 B3 B2 B2 B2 B1 B1 B1 B1 B0 B0 B0 B0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 2 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 log n
Assembly of n x n Squares A3 A2 B3 0 2 2 0 1
Assembly of n x n Squares A3 A3 A3 A2 A2 A2 A1 A1 A0 A0 B3 B3 B2 B2 B1 B1 B0 B0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 2 1 2 3 0 1 2 3 0 0 1 1 2 3 0 1 2 3 0 log n
Assembly of n x n Squares A3 A3 A3 A2 A2 A2 A1 A1 A0 A0 B3 B3 B3 B2 B2 B2 B1 B1 B1 B1 B0 B0 B0 B0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 2 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 log n
Assembly of n x n Squares • build 2 x log n block: • Decode geometry into log n bit string A3 A3 A3 A2 A2 A2 A1 A1 A0 A0 B3 B3 B3 B2 B2 B2 B1 B1 B1 B1 B0 B0 B0 B0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 2 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 log n
n x n Results Tile Complexity Upper bound Lower bound Normal Tiles* Geometric Tiles Planar Geometric Tiles [*Winfree, Rothemund, Adleman, Cheng, Goel,Huang STOC 2000, 2001]
Planar Geometric Tile Assembly Attachment requires a collision free path within the plane
Planar Geometric Tile Assembly Attachment requires a collision free path within the plane Attachment not permitted in the planar model
Planar Geometric Tile Assembly Attachment not permitted in the planar model
n x n Results Tile Complexity Upper bound Lower bound Normal Tiles* Geometric Tiles Planar Geometric Tiles ? [*Winfree, Rothemund, Adleman, Cheng, Goel,Huang STOC 2000, 2001]
n x n Results Tile Complexity Upper bound Lower bound Normal Tiles* Geometric Tiles Planar Geometric Tiles O( loglog n ) ? [*Winfree, Rothemund, Adleman, Cheng, Goel,Huang STOC 2000, 2001]
Planar Geometric Tile Assembly log n 1 0 1 0 0 1 1 0
Planar Geometric Tile Assembly • Build log n columns with loglog n tile types 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 loglog n 0 1 0 1 0 1 0 1
Planar Geometric Tile Assembly • Build log n columns with loglog n tile types 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 loglog n 0 1 0 1 0 1 0 1
Planar Geometric Tile Assembly • Build log n columns with loglog n tile types • Columns must assemble in proper order 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 loglog n 0 1 0 1 0 1 0 1