1 / 38

Reinhard Laubenbacher Virginia Bioinformatics Institute And Department of Mathematics

Network Inference, With an Application to Yeast Systems Biology Center for Genomic Sciences Cuernavaca, Mexico September 25 , 2006. Reinhard Laubenbacher Virginia Bioinformatics Institute And Department of Mathematics Virginia Tech http://polymath.vbi.vt.edu. Contributors and Collaborators.

joelgarcia
Download Presentation

Reinhard Laubenbacher Virginia Bioinformatics Institute And Department of Mathematics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Network Inference, With an Application to Yeast Systems BiologyCenter for Genomic SciencesCuernavaca, MexicoSeptember 25, 2006 Reinhard Laubenbacher Virginia Bioinformatics Institute And Department of Mathematics Virginia Tech http://polymath.vbi.vt.edu

  2. Contributors and Collaborators Collaborators • Diogo Camacho (VBI) • Ana Martins (VBI) • Pedro Mendes (VBI) • Wei Shah (VBI) • Vladimir Shulaev (VBI) • Michael Stillman (Cornell) • Bernd Sturmfels (UC Berkeley) Applied Discrete Mathematics Group (http://polymath.vbi.vt.edu) • Miguel Colòn-Velez • Elena Dimitrova (now at Clemson U) • Luis Garcia (now at Texas A&M) • Abdul Jarrah • John McGee (now at Radford U) • Brandy Stigler (now at MBI) • Paola Vera-Licona Funding: NIH, NSF, Commonwealth of VA

  3. “All processes in organisms, from the interaction of molecules to the complex functions of the brain and other whole organs, strictly obey […] physical laws. “Where organisms differ from inanimate matter is in the organization of their systems and especially in the possession of coded information.” E. Mayr, 1988

  4. A multiscale system Environment Organism Increasing complexity Molecular networks Genome

  5. Discrete models “[The] transcriptional control of a gene can be described by a discrete-valued function of several discrete-valued variables.” “A regulatory network, consisting of many interacting genes and transcription factors, can be described as a collection of interrelated discrete functions and depicted by a wiring diagram similar to the diagram of a digital logic circuit.” Karp, 2002

  6. Model Types Ideker, Lauffenburger, Trends in Biotech 21, 2003

  7. Biochemical Networks Brazhnik, P., de la Fuente, A. and Mendes, P. Trends in Biotechnology20, 2002

  8. H O H O O CH3 C CH3 + X CH3 C CH3 + oxidized X Cumene hydroperoxide (CHP) Cumyl alcohol (COH) Introduction to oxidative stress and CHP • Oxidative Stress is a general term used to describe the steady state level of oxidative damage in a cell, tissue, or organ, caused by the species with high oxidative potential. • Cumene hydroperoxide (CHP) is an organic peroxide, thus has high oxidative potential. CHP is very reactive and can easily oxidize molecules such as lipids, proteins and DNA. • Oxidation by CHP Courtesy of Wei Sha

  9. + GSH ROOH (peroxides) Glutathione-glutaredoxin antioxidant defense system Glu + Cys Feedback inhibition  -glutamylcysteine synthetase (GSH1) -GluCys NADPH NADP+ + Gly glutathione synthetase (GSH2) glutathion oxidoreductase (GLR1) thioredoxin reductase (TRR1) GSSG+ROH (alcohol or water) glutathione peroxidase (GPX1, GPX2, GPX3) + glutaredoxin (GRX1, GRX2) RX glutathione S-transferase (GTT1, GTT2) HX + R-SG Courtesy of Wei Sha

  10. Quench metabolism in cold buffered methanol Cell growth in controlled batch (in fermentors) Saccharomyces cerevisiae systems biology at VBI Experimentation Experimental treatment (i.e. oxidative stress) Break cells with high frequency sound waves Separate cells from the media Metabolite extraction Sample Prep Protein extraction Freeze-dry GC-MS LC-MS CE-MS 2D PAGE, MALDI-MS Analysis Data Samples for metabolites, RNA and proteins RNA extraction Affymetrix GeneChipTM Modeling Courtesy V. Shulaev

  11. Wild type yeast culture Wild type yeast culture 1 Wild type yeast culture Wild type yeast culture 2 Wild type yeast culture Wild type yeast culture 3 Experimental design CHP treated Samples Cumene hydroperoxide (CHP) 0 min 3 min 6 min 12 min 20 min 40 min 70 min 120 min Control Samples Buffer (EtOH) 0 min 3 min 6 min 12 min 20 min 40 min 70 min 120 min 1 2 3 Affymetrix Yeast Genome S98 array Fermentor that contains yeast cell culture Courtesy W. Sha

  12. Why is it important to use control samples? Control samples CHP treated samples Courtesy W. Sha

  13. Cumene hydroperoxide (CHP) and cumyl alcohol (COH) progress curves In yeast cell culture In medium Courtesy W. Sha

  14. Pathways induced by oxidative stress were identified Courtesy W. Sha

  15. Pathways repressed by oxidative stress were identified Courtesy W. Sha

  16. k-means clustering analysis result 1 2 3 4 5 Courtesy W. Sha

  17. 2 3 1 ATP synthesis 4 5 Pathway analysis for each cluster Galactose metabolism Starch and sucrose metabolism Oxidative phosphorylation Where are the oxidative stress defense pathways? Ribosome Cell cycle RNA polymerase Purine metabolism Pyrimidine metabolism Proteasome Ubiquitin mediated proteolysis MAPK signaling pathway Courtesy W. Sha

  18. Genotype Phenotype YAP1 was successfully knocked out in yap1 mutant yeast The transformation of CHP to COH in wild type Time series of YAP1 gene expression level in wild type control sample wild type CHP treated sample yap1 mutant Control sample yap1 mutant CHP treated sample in yap1 mutant Courtesy W. Sha

  19. Claytor Lake Network M1 M2 M23 Courtesy P. Mendes

  20. “Bottom-up modeling:” Model individual pathways and aggregate to system-level models “Top-down modeling:” Develop network inference methods for system-level phenomenological models

  21. Courtesy P. Mendes

  22. Genetic Regulation Courtesy P. Mendes

  23. I = lac repressor = protein which regulates transcription of lac mRNA (genes in blue) Z = beta-galactosidase = protein which cleaves lactose to produce glucose, galactose, and allolactose Y = Lactose permease = protein which transports lactose into the cell http://web.mit.edu/esgbio/www/pge/lac.html

  24. Discrete Model for lac Operon M = mRNA for lac genes: LacZ, LacY, LacA B = beta-galactosidase A = allolactose = isomer of lactose (inducer) L = lactose (intracellular) P = lactose permease fM = A fB = M fA = A (L B) fL = P (L B) fP = M • Model assumptions • Transcription/translation require 1 time unit • mRNA/protein degradation require 1 time unit • Extracellular lactose always available

  25. Discrete Model with Dynamics (M, B, A, L, P)

  26. Variables x1, … , xn with values in a finite set X. (s1, t1), … , (sr, tr) state transition observations with sj, tjεXn. Goal: Identify a collection of “best” dynamical systems f=(f1, … ,fn): Xn→ Xn such that f(sj)=tj. • Wiring diagram • Dynamics

  27. R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse-engineering of gene regulatory networks, J. Theor. Biol. 229 (2004) A. Jarrah, R. Laubenbacher, B. Stigler, and M. Stillman, Reverse-engineering of polynomial dynamical systems, Adv. in Appl. Math. (2006)in press

  28. Method Validation:Simulated gene network Pandapas network • 10 genes, 3 external biochemicals • 17 interactions Time course data: 9 time points • Generated 8 time series for wildtype, knockouts G1, G2, G5 • 192 data points • G6, G9 constant Data discretization • 5 states per node • 95 data points • 49% reduction • < 0.00001% of 513 total states Courtesy B. Stigler

  29. Method Validation:Simulated gene network Minimal Sets Algorithm • 77% interactions • Identified targets of P2, P3 (x12, x13) • 11 false positives, 4 false negatives Pandapas Reverse engineered Courtesy B. Stigler

  30. Example: Gene Regulatory Networks Stable steady states: (1.99006, 1.99006, 0.000024814, 0.997525, 1.99994) (-0.00493694, -0.00493694, -0.0604538, -0.198201, 0.0547545)

  31. Data (discretized to 5 states) Algorithm input: 7 such time courses, 60 state transitions

  32. f1 = – x4+1 f2 = 1 f3 = x4+1 f4 = 1 f5 = –x53 –2x52+2x4 –2x5 –2 G1 G3 G5 G2 G4 A model for 1 wildtype time series

  33. G1 G3 G5 G2 G4 G1 G1 G1 G3 G3 G3 G5 G2 G4 G5 G5 G2 G4 G2 G4 Adding another wildtype time series Adding a knockout time series All time series

  34. G1 G3 G5 G2 G4 Using 10 random variable orders

  35. Wiring diagram missing two (20%) edges; includes 5 indirect interactions. • Network has 55 = 3125 possible state transitions. • Input: 60 ( = approx. 2%) state transitions.

  36. Dynamics Stable steady state: (1.99006, 1.99006, 0.000024814, 0.997525, 1.99994) Discretization Fixed point: (4, 4, 2, 4, 2)

  37. Dynamics f1 = 3x3x53+x54+4x33+x12x5+4x3x52+2x12+3x32+4x1x5+x52+4x3+4x5+3 f2 = 4x3x54+4x3x53+4x54+x33+4x12x5+2x3x52+4x53+2x12+2x1x3+3x32+2x3x5+4x52+4x1+4x5+1 f3 = x13x4+4x1x43+3x12x4+4x1x42+x43+x12+x1x4+x42+x1+x4+4 f4 = x3x54+2x3x53+3x54+4x33+x12x5+3x32x5+2x3x52+2x1x3+2x32+x52+4x1+x3+4x5+4 f5 = 4x3x54+3x3x53+2x53+x12+2x1x3+2x32+4x3+4x5+4 Phase space: There are 4 components and 4 fixed point(s) Components Size Cycle Length • 2200 1 • 890 1 • 10 1 • 25 1 TOTAL: 3125 = 55 nodes Printing fixed point(s)... [ 0 1 2 1 0 ] lies in a component of size 25. [ 2 2 4 2 3 ] lies in a component of size 10. [ 4 4 2 2 3 ] lies in a component of size 890. [ 4 4 2 4 2 ] lies in a component of size 2200.

  38. Summary • To use “omics” data set to their full potential network inference methods are useful. • Cellular processes are dynamical systems, so we need methods for the inference of dynamical systems models. • Special data requirements. • Models are useful to generate new hypotheses. • Validation of modeling technologies is crucial.

More Related