370 likes | 508 Views
3D and NLTE analysis for large stellar surveys. Karin Lind Uppsala University, Sweden. Martin Asplund , Paul Barklem , Andrey Belyaev , Maria Bergemann , Remo Collet, Zazralt Magic, Anna Marino, Jorge Meléndez , Yeisson Osorio. Outline. Introduction 1D LTE/NLTE
E N D
3D and NLTE analysis for large stellar surveys Karin Lind Uppsala University, Sweden Martin Asplund, Paul Barklem, AndreyBelyaev, Maria Bergemann, Remo Collet, Zazralt Magic, Anna Marino, Jorge Meléndez, Yeisson Osorio
Outline • Introduction • 1D LTE/NLTE • Worst-case scenarios • Recent progress • Calibration techniques • Practical implementation • Applications • 3D LTE/NLTE • Worst-case scenarios • Observational tests • Mg : 1D/<3D>/LTE/NLTE • Ca : 1D/<3D>/3D/LTE/NLTE • Applications
Motivation • Galactic archaeology by chemical tagging of FGK stars • Statistics : Soon > 106 stars • Precision(S/N, wavelength range) : • σ[X/H] < 0.1dex, σTeff<150K, σlog(g)<0.3dex • Accuracy(assumptions: 1D, LTE, atomic data) : • σ[X/H]< 0.5 dex, σTeff<400K, σlog(g)< 1 dex
Methods Model atmosphere Detailed rad. Transfer 1D/<3D>/3D LTE 1D/3D LTE/NLTE R. Collet
(1D) N- Is it really necessary? Is it safe?
Worst-case scenario I NaD lines in metal-poor horisontal branch stars Lind et al. 2011, Marino et al. 2011 B-I
Worst-case scenario II OI 777nm triplet at very low metallicities LTE trend Fabbian et al. 2009
Input data for NLTE analysis Energy levels + oscillator strengths + photo-ionization cross sections Red boxes : have sufficient(?) data Blue boxes : missing e.g. QM photo-ionisation, but NLTE still attempted
Input data for NLTE analysis Blue boxes : QM hydrogen collisions exist or will exist
Input data for NLTE analysis Most important free parameter in NLTE modelling of Fe is FeI+HI collisional cross-section Black – LTE Blue – NLTE with no hydrogen collisions Solar neighborhood MDF Halo MDF [X/Fe] vs [Fe/H]
Calibration techniques: ionisation balance Korn et al. 2003 FeI/FeIIionisation equilibrium calibrated using Hipparcos gravities S(H)=3
Calibration techniques: excitation balance Bergemann & Gehren 2008 “Thus, NLTE can solve the discrepancy between the abundances derived from the MnI resonance triplet at 403 nm and excited lines, which is found in analyses of metal-poor subdwarfs and subgiants” S(H)=0.05
Calibration techniques: CLV Allende Prieto et al. (2004) Solar centre-to-limb variation of OI lines
Practical implementation I “Curves-of-growth” from UV-NIR: 3200 FeI lines 107FeII lines Teff=6500K log(g)=4.0 ξ=2km/s ΔNLTE Lind et al. (2012)
Practical implementation II Pre-computed departure coefficients NLTE synthesis T. Nordlander
FeI NLTE grid Lind et al. (2012)
Application : metal-poor stars LTE NLTE +PHOT Ruchti et al. (2012)
Application : metal-poor stars LTE NLTE+PHOT Serenelli et al. (2013)
3D (LTE/NLTE) Is it really necessary? Is it safe?
Stagger grid Magic et al. 2014
Abundance patterns Keller et al. (2014) Dashed –200 Msun PISN Solid – 60Msun fallback 3D N-LTE
Worst-case scenario III Li isotopic abundances 3D N-LTE Lind et al. 2013 Asplund et al. 2006
Observational tests: the Sun Pereira et al. 2013 “We confronted the models with observational diagnostics of the [solar] temperature profile: continuum centre-to-limb variations (CLVs), absolute continuum fluxes, and the wings of hydrogen lines. We also tested the 3D models for the intensity distribution of the granulation and spectral line shapes. ” “We conclude that the 3D hydrodynamical model is superior to any of the tested 1D models.”
Observational tests: low [Fe/H] Klevas et al. 2013 FeI line assymmetries in the metal-poor giant HD122563
1.5/3D + NLTE LiI : Asplund et al. 2003, Sbordone et al. 2010 OI, FeI : Shchukina et al. 2005 OI : Pereira et al. 2010, Prakapavičius et al. 2013 LiI, NaI, CaI: Lind et al. 2013
Mg b in a VMP SG “No” free parameters! HD140283 Teff=5780K log(g)=3.7 [Fe/H]=-2.4 1D LTE 1D NLTE <3D> LTE <3D> NLTE Yeisson Osorio
Ca in a VMP dwarf 1D NLTE LTE 3D <3D> HD19445 Teff=6000K log(g)=4.5 [Fe/H]=-2.0
Ca in a VMP dwarf 1D NLTE LTE 3D <3D> HD19445 Teff=6000K log(g)=4.5 [Fe/H]=-2.0
Ca in a EMP TO Start ? Goal G64-12 Teff=6430K log(g)=4.0 [Fe/H]=-3.0 Bullets: Optical CaI lines Squares: NIR CaII triplet
Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet
Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet
Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet
Ca in a EMP TO Start ? Goal Bullets: Optical CaI lines Squares: NIR CaII triplet
Ways forward A : NLTE-sensitive, B : not NLTE-sensitive