230 likes | 401 Views
Renormalization in the Higgs triplet model . Mariko Kikuchi (Univ. of Toyama). Collaborators: Mayumi Aoki, Shinya Kanemura , Kei Y agyu. M . Aoki, S. Kanemura , M. Kikuchi, K. Yagyu , PLB 714, 279 ( 2012). Workshop on Multi-Higgs Models , 31. August, 2012, Lisbon. C ontents.
E N D
Renormalization in the Higgs triplet model Mariko Kikuchi (Univ. of Toyama) Collaborators: Mayumi Aoki, Shinya Kanemura, Kei Yagyu M. Aoki, S. Kanemura, M. Kikuchi, K. Yagyu,PLB 714, 279(2012) Workshop on Multi-Higgs Models , 31. August, 2012, Lisbon
Contents We focus on the Higgs triplet model. The motivation is neutrino masses. Higgs Triplet Model(HTM) Renormalization in the EW parameters One loop calculations in the Higgs potential • Type II seesaw scenario • EW ρ parameter, Mass Formula mW2, ρ, Γ(h→gg) hWW coupling Corrections to Mass formula hhh coupling Corrections to
Neutrino Mass Higgs triplet model (HTM) Type II seesaw model Cheng, Li (PRD, 1980) Mohapatra, Senjanovic (PRD, 1981) Mass eigenstates H±±, H±, A, H, h Breaking L# two units ⇒ Majorana massesare produced. × If μ is small, masses of triplet fields can be at the TeV scale. It is possible to test at the collider experiment.⇒MΔ~ O(100)GeV~ 1TeV!!!
Neutrino Mass Higgs triplet model (HTM) Type II seesaw model Cheng, Li (PRD, 1980) Mohapatra, Senjanovic (PRD, 1981) Mass eigenstates H±±, H±, A, H, h Breaking L# two units ⇒ Majorana massesare produced. × • ~ O(1) μ~ O(0.1-1)eV If μ is small, masses of triplet fields can be at the TeV scale. It is possible to test at the collider experiment.⇒MΔ~ O(100)GeV~ 1TeV !!!
Model • Mass eigenstatesH±±, H±, A, H, h • Mass hierarchy • Mass spectrum Mass difference arises due to λ5
Mass Relation • Constraint from ρ parameter i = φ, Δ HTM (experiment) vφ: VEV of φ vΔ: VEV of Δ vΔ2vφ2 ⇒ mixing between φ and Δis small. (αis small.) • Mass formula mH++2- mH+2≃ mH+2- mA2≃ - This mass formula is useful to distinguish the model from the other models. For future precision measurement, we have to obtain the formula with radiative corrections.
Phenomenology If Δm≠0, decay processes of triplet-like scalar fields are different from the case with Δm=0. • Ex)) the decay process of H++ Δm≠ 0 Δm= 0 (Δm=30GeV) the cascade decay of H++dominates. H++→ H+W+→ H0W+W+→ bb W+W+ H++→ l+l+⇒ mH++>400GeV LHCdata In the case (Δm ≠ 0), mH++>400GeV • Mass identification Aoki, Kanemura, Yagyu (PRD85, 055007) 2012 All masses of triplet-like Higgs bosons may be measured at LHC by evaluating the transverse mass distribution.
Renormalization for EW parameter Model with ρ=1 at tree (SM, THDM, …) 3 inputs: GF, α, mZ2 + - Quadraticmass effects appear! Parameters in Gauge Sector: v, vΔ, g, g’ HTM: ρ≠1 at tree 4 inputs: GF, α, mZ2, sin2θW Renormalization Condition for sin2θW Blank, Hollik (NP,1998) Kanemura, Yagyu (PRD, 2012) Quadraticmass effectsare absorbed by the renormalization of sin2θW.
Kanemura, Yagyu (PRD,2012) Aoki, Kanemura, Kikuchi, Yagyu (in preparation) mh=125GeV mlightest=150 GeV α = 0
EW parameters • Input parameters PDG(2010) • Tree level relations
Kanemura, Yagyu (PRD,2012) mW2, ρ Aoki, Kanemura, Kikuchi, Yagyu (in preparation) mh=125GeV mlightest=150GeV, α = 0 Case I is favored !!!!! Case II is constrained !!!
mW2, ρ Kanemura, Yagyu (PRD,2012) Aoki, Kanemura, Kikuchi, Yagyu (in preparation) mh=125GeV mlightest=150GeV, α = 0 Δm= -400 GeV Δm = -100 GeV |Δm|=100~400GeV Unitarity requires |Δm| < 300-400 GeV |Δm|=mH++ - mH+
mW2, ρ Kanemura, Yagyu (PRD,2012) mh=125GeV mlightest=150GeV, α = 0 Aoki, Kanemura, Kikuchi, Yagyu (in preparation) vΔis 3.5-8 GeV
EW Data |Δm|~ O(100-400) GeV vΔ ~3.5-8 GeV Unitarity Bound |Δm| < 300-400 GeV mH++~ 100-200GeV
Rgg 2 t W H++ H+ Rggdepends on λ4 + + + A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, L. Rahili(arXiv:1112.5453 ) A. G. Akeroyd, S. Moretti (arXiv: 1206.0535 ) vΔ=5.69GeV mlightest=300GeV ICHEP(2012) Summary Talk If λ4 is minus, Rgg can be larger than 1 !! Unitarity Bound -3≦λ4≦4 (Δm=-100GeV)
Renormalization of the Higgs potential <Physical Parameters> <Parameters in the Higgs potential> μ , m , M , λ1 , λ2 , λ3 , λ4 , λ5 v , vΔ , mH++ , mH+ , mA , mh , mH , α • Counter-terms δv, δvΔ,δmH++2 , δmH+2, δmA2, δmh2, δmH2 , δα Tadpoles:δTφ,δTΔ , Renormalization of wave functions:δZh , δZH , δZA , δZG0 , δZH+ , δZG+ , δZH++ , δChH , δCAG0 , δCH+G+ • We determine δv, δvΔby EW renormalization. • On-shellrenormalization scheme Field strength Mixing angle
Radiative correction to the mass formula In favored parameter sets by EW data : mH++<mH+<mH,mA, vΔ=3.5-8 GeV, Δm=100~300GeV, mlightest=100~150GeV 1 mA2(tree) have been an output parameter. New Mass formula with the 1-loop correction ΔR is large (O(10)% as a correction). ⇒ We have to take into account the radiative correction for comparing the precision data.
hZZ,hWW hZZ hWW Δm= mH++-mH+ • hZZ receives about -1.8~-2.5% correction. • hWW receives about -0.5~-1.8% correction. • ⇒ We expect to test hZZ and hWW coupling at ILC.
hhh • hhh receives a large correction, about 25~100% • ⇒We expect to test hhh coupling at ILC.
Summary • The tree level The precision measurement in the future Theoretical calculations with radiative corrections × • ρ≠ 1 mH++2- mH+2≃ mH+2- mA2 = ID of a model • 1 loop correction • Renormalization scheme is different from the one of the SM. Input parameters Gf, α, mZ2, + sin2θW • Results of radiative corrections • mW2 and ρ ⇒ Constraint to the parameters region • Rggcan be larger than 1. • ΔRcan be large. ~O(10)% • hZZ, hWW receives O(1)% corrections. • hhh can receive large corrections as non-decoupling effects.~10~30% When we compare with the precision data, we should consider the radiative correction !!!
Thank you !! Mariko
Renormalization for EW parameter Blank, Hollik (NP,1998) Kanemura, Yagyu (PDR, 2012) ρ deviates from unity at the tree level. Parameters in the kinetic term: v, vΔ, g, g’ Physical parameters:Gf, α, mZ2, sin2θW, mW2, v, (vΔ) Input parameters Gf, α, mZ2, sin2θW On-shellrenormalization ρ≠1(HTM) ρ=1(SM, THDM) Δr Δr Quadraticmass effects in Δrare absorbed by renormal of sin2θW. Quadraticmass effects appear!