1 / 11

Computational Photography Final Project Image Analogies

Computational Photography Final Project Image Analogies. Student: 劉美麟 Student ID: 602410027. Outline. Introduction Method Result Demo Conclusion Reference. Introduction.

josef
Download Presentation

Computational Photography Final Project Image Analogies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computational Photography Final ProjectImage Analogies Student: 劉美麟 Student ID: 602410027

  2. Outline • Introduction • Method • Result • Demo • Conclusion • Reference

  3. Introduction • Image Analogies的主要目的為使用兩張image,A和A‘,找出他們對應的關係後,利用B去生成B’(A:A’=B:B’)。例如:現在有一照片A及其對應的水彩畫A’,我們期待夠過這個系統能夠將照片B轉換成水彩畫B’(如下圖)。

  4. Method • 這次使用的方法主要參考Aaron Hertzmann等人於2001所著的Image Analogies[1]中的演算法,並減化修改而成。原著演算法如下:

  5. Method Find approximate point of A and B bases on Y of YIQ Use point to find information at the same index in A' and transfer it over to B' Convert RGB to YIQ 將A、A’及B轉換成YIQ的色彩空間,因為人眼對亮度比較敏感。 對轉換後的A和B做Gaussian Blur。 在這裡我沒有做Gaussian Pyramid,僅以Gaussian BlurFilter使之變模糊。 利用A和B的亮度(Y)取當前的點的neighborhood當做feature point,取ssd後的最小值即為最相似的點。 在論文當中是利用ANN search以及coherence match去尋找最佳點。 在找到A和B相對的最佳點後(假設在A中為x,B中為i),取A’(x)的Y值以及B(i)的I和Q,轉回RGB後放到B’(i)。 Gaussian Blur Filter

  6. Result Load 對應框框的圖檔,並顯示於對應的框框(A、A’和B) A A’ B’ B 按下後就會在B‘這個框框顯示結果 關閉視窗

  7. Result A A’ B B’

  8. Result A A’ B B’

  9. Demo http://youtu.be/f7LXGzGOG5Y

  10. Conclusion • 沒有使用Gaussian Pyramid,而是以YIQ去調整色彩空間使得效果看起來並沒有辦法完全類比原圖。 • 以ssd尋找最相似點的方式相當簡單去實現,但是因為需要大量的迴圈和計算,因此速度相當慢,效率不好。

  11. Reference • Aaron Hertzmann, Charles E, Nuria Oliver, Brian Curlessand David H. 2001. Image Analogies. Proceeding SIGGRAPH'01 Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 327-340 • Image Analogies By Lyn Fong http://cs.brown.edu/courses/csci1950-g/results/final/lfong/ • Image Analogies By Melissa Byunhttp://cs.brown.edu/courses/csci1290/2011/results/final/mbyun/

More Related