1 / 56

III. Multicore Processors (6)

III. Multicore Processors (6). Dezső Sima Spring 2007. (Ver. 2.0).  Dezső Sima, 2007. 10.4. Sun’s MC processors. 10.4.1 Gemini. 10.4.2 UltraSPARC IV line. 10.4.3 UltraSPARC T line. 10.4 Evolution of Sun’s processor lines. Multi-core processors.

josiah
Download Presentation

III. Multicore Processors (6)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. III. Multicore Processors (6) Dezső Sima Spring 2007 (Ver. 2.0)  Dezső Sima, 2007

  2. 10.4. Sun’s MC processors • 10.4.1 Gemini • 10.4.2 UltraSPARC IV line • 10.4.3 UltraSPARC T line

  3. 10.4 Evolution of Sun’s processor lines Multi-core processors Figure: Overview of Sun’s major processor families Source: Kapil S., „Gemini,” 2003, http://www.hotchips.org/archives/hc15/3_Tue/12.sun.pdf

  4. 10.4 Sun’s MC processors 10.4.1 Gemini • Gemini (cancelled) 130 nm 4/2004

  5. 10.4.1 Gemini (1) JBus contr. Mem. contr. Figure: The Gemini processor Source: Kapil S., „Gemini,” 2003, http://www.hotchips.org/archives/hc15/3_Tue/12.sun.pdf

  6. 10.4.1 Gemini (2) Figure: Block diagram and die shot of the Gemini Source: Kapil S., „Gemini,” 2003, http://www.hotchips.org/archives/hc15/3_Tue/12.sun.pdf

  7. 10.4.1 Gemini (3) Figure: Main features of the Gemini processor Source: Kapil S., „Gemini,” 2003, http://www.hotchips.org/archives/hc15/3_Tue/12.sun.pdf

  8. 10.4.1 Gemini (4) Model Gemini Dual/Quad-Core DC Cores 2* UltraSPARC II Introduction Cancelled 4/2004 Technology 130 nm Die size 206 mm2 Nr. of transistors 80 mtrs. fc [GHz] 1.0/1.2 L2 Size/allocation 2*512 KB/private Implementation On-die L3 Size Implementation Mem. Contr. On-die TDP [W] 32 Socket 959 pin PGA Multithreading Table: Main features of Sun’s Gemini

  9. 10.4 Sun’s MC processors 10.4.2 UltraSPARC IV line • UltraSPARC IV Jaguar 3/2004 130 nm • UltraSPARC IV+ Panther 9/2005 90 nm

  10. 10.4.2 UltraSPARC IV (1) ARB: Arbiter Figure : UltraSPARC IV (Jaguar) Source: C. Boussard: Architecture des processeurshttp://laser.igh.cnrs.fr/IMG/pdf/SUN-CNRS-archi-cpu-3.pdf

  11. 10.4.2 UltraSPARC IV (2) Figure: Floor plan of the UltraSPARC IV Source: Krewell K., „UltraSPARCIV Mirrors Predecessor, MPR, Nov. 10, 2003, http://www.sun.com/processors/feature/M45_UltraSPARC4_rpnt.pdf

  12. 10.4.2 UltraSPARC IV (3) Model Gemini UltraSPARC IV(Jaguar) Dual/Quad-Core DC DC Cores 2* UltraSPARC II 2*UltraSPARC III Introduction Cancelled 4/2004 7/2004 Technology 130 nm 130 nm Die size 206 mm2 352 mm2 Nr. of transistors 80 mtrs. 66 mtrs. fc [GHz] 1.0/1.2 1.050/1.200/1.350 L2 Size/allocation 2*512 KB/private 2*8 MB/private Implementation On-die Off-die, L2 tags on-die L3 Size 16 MB/shared Implementation Mem. Contr. On-die On-die TDP [W] 32 108 Socket 959 pin PGA 1368 pin LGA Multithreading Table: Main features of Sun’s UltraSPARC IV processor

  13. 10.4.2 UltraSPARC IV+ (1) Figure: UltraSPARC IV+ (Panther) Source: C. Boussard: Architecture des processeurs,http://laser.igh.cnrs.fr/IMG/pdf/SUN-CNRS-archi-cpu-3.pdf

  14. 10.4.2 UltraSPARC IV+ (2) UltraSPARC IV+ 19.7 x 17.0 mm Figure: Die shot and floor plan of the UltraSPARCIV+ Source: Dixit A. et al., „Implementation and Productization of a 4th Generation 1.8 GHz Dual-Core SPARC V9 Microprocessor, Febr. 2006, http://www.ewh.ieee.org/r6/scv/ssc/Feb2006.pdf

  15. 10.4.2 UltraSPARC IV+ (3) UltraSPARC IV+ UltraSPARC IV 130 nm/356 mm2/66 mtrs 90 nm/335 mm2/295 mtrs Figure: Contrasting the floor plans of the UltraSPARC IV and UltraSPARC IV+ dies Sources: Krewell K., „UltraSPARCIV Mirrors Predecessor, MPR, Nov. 10, 2003, http://www.sun.com/processors/feature/M45_UltraSPARC4_rpnt.pdf Dixit A. et al., „Implementation and Productization of a 4th Generation 1.8 GHz Dual-Core SPARC V9 Microprocessor, Febr. 2006, http://www.ewh.ieee.org/r6/scv/ssc/Feb2006.pdf

  16. 10.4.2 UltraSPARC IV+ (4) Figure: Schmoo plot of the UltraSPARCIV+ Source: Dixit A. et al., „Implementation and Productization of a 4th Generation 1.8 GHz Dual-Core SPARC V9 Microprocessor, Febr. 2006, http://www.ewh.ieee.org/r6/scv/ssc/Feb2006.pdf

  17. 10.4.2 UltraSPARC IV+ (5) Model Gemini UltraSPARC IV(Jaguar) UltraSPARC IV+(Panther) Dual/Quad-Core DC DC DC Cores 2* UltraSPARC II 2*UltraSPARC III 2*UltraSPARC III Introduction Cancelled 4/2004 7/2004 9/2005 Technology 130 nm 130 nm 90 nm Die size 206 mm2 352 mm2 335 mm2 Nr. of transistors 80 mtrs. 66 mtrs. 295 mtrs. fc [GHz] 1.0/1.2 1.050/1.200/1.350 1.5/1.8 L2 Size/allocation 2*512 KB/private 2*8 MB/private 2 MB/shared Implementation On-die Off-die, L2 tags on-die On-die L3 Size 16 MB/shared 32 MB/shared Implementation L3 tags on-die,L3 exclusive of L2 Mem. Contr. On-die On-die On-die TDP [W] 32 108 90 Socket 959 pin PGA 1368 pin LGA 1368 pin LGA Multithreading Table: Main features of Sun’s IV+ processor

  18. 10.4 Sun’s MC processors 10.4.3 UltraSPARC T line • UltraSPARC T1 Niagara 11/2005 90 nm • UltraSPARC T2 Niagara 2 2007 65 nm

  19. 10.4.3 UltraSPARC T1 (1) Figure: Block diagram of the UltraSPARC T1 (Niagara) Source: Laudon J., „UltraSPARC T1: A 32-threaded CMP for Servers, 2006, http://www.cs.duke.edu/courses/fall06/cps220/lectures/UltraSparc_T1_Niagra.pdf

  20. 10.4.3 UltraSPARC T1 (2) Figure: Pipeline stages of the Niagara cores (scalar FX cores) Source: Laudon J., „UltraSPARC T1: A 32-threaded CMP for Servers, 2006, http://www.cs.duke.edu/courses/fall06/cps220/lectures/UltraSparc_T1_Niagra.pdf

  21. 10.4.3 UltraSPARC T1 (3) Figure: Die shot of Niagara Source: Laudon J., „UltraSPARC T1: A 32-threaded CMP for Servers, 2006, http://www.cs.duke.edu/courses/fall06/cps220/lectures/UltraSparc_T1_Niagra.pdf

  22. 10.4.3 UltraSPARC T1 (4) Figure: Floor plan and main features of Niagara Source: Laudon J., „UltraSPARC T1: A 32-threaded CMP for Servers, 2006, http://www.cs.duke.edu/courses/fall06/cps220/lectures/UltraSparc_T1_Niagra.pdf

  23. 10.4.3 UltraSPARC T1 (5) Series UltraSPARC T1 Models UltraSPARC T1 Nr. of cores 8 cores Impl. or the cores Monolithic Architecture SPARC V9 Cores Scalar integer FX cores Introduction 11/2005 Technology 90 nm Die size 379 mm2 Nr. of transistors 279 mtrs. fc [GHz] 1.2 L2 Size/allocation 3 MB/shared Implementation On-die L3 I/O-bus JBus (3.2 GB/s) Interconnection NW Bandwidth: >200 GB/s Memory controller 4-channels, on-die, 400 MT/s Memory bandwidth 25.6 GB/s TDP [W] 63 Multithreading 4-way/core Table: Main features of Sun’s UltraSPARC T1 processor

  24. 10.4.3 UltraSPARC T2 (1) Figure: Block diagram of UltraSPARC 2 (Niagara-2) Source: Golla R, „Niagara2: A Highly Threaded Server-on-a-Chip,” Oct. 2006, http://www.opensparc.net/pubs/preszo//06/04-Sun-Golla.pdf

  25. 10.4.3 UltraSPARC T2 (2) Figure: block diagram of the cores in Niagara 2 Source: Golla R, „Niagara2: A Highly Threaded Server-on-a-Chip,” Oct. 2006, http://www.opensparc.net/pubs/preszo//06/04-Sun-Golla.pdf

  26. 10.4.3 UltraSPARC T2 (3) Figure: The full crossbar swith of Niagara 2 Source: Golla R, „Niagara2: A Highly Threaded Server-on-a-Chip,” Oct. 2006, http://www.opensparc.net/pubs/preszo//06/04-Sun-Golla.pdf

  27. 10.4.3 UltraSPARC T2 (4) Main features and floor plan of the Niagara-2 Source: Golla R, „Niagara2: A Highly Threaded Server-on-a-Chip,” Oct. 2006, http://www.opensparc.net/pubs/preszo//06/04-Sun-Golla.pdf

  28. 10.4.3 UltraSPARC T2 (5) Figure: Floor plan of the Niagara-2 Source: Grohoski G., „Niagara-2,” Aug. 2006, http://www.opensparc.net/pubs/preszo/06/HotChips06_09_ppt_master.pdf

  29. 10.4.3 UltraSPARC T2 (6) Figure: Comparison of the block diagrams of Niagara-1 and -2 Source: Kanter D.” Niagara II, The Hydra Returns,” http://realworldtech.com/page.cfm?ArticleID=RWT090406012516&p=4

  30. 10.4.3 UltraSPARC T2 (7) Series UltraSPARC T1/T2 Models UltraSPARC T1 UltraSPARC T2 Nr. of cores 8 cores 8 cores Impl. or the cores Monolithic Monolithic Architecture SPARC V9 SPARC V9 Cores Scalar integer FX cores Dual-issue FX/FP cores Introduction 11/2005 2007 Technology 90 nm 65 nm Die size 379 mm2 342 mm2 Nr. of transistors 279 mtrs. n.a. fc [GHz] 1.2 1.4 L2 Size/allocation 3 MB/shared 4 MB/shared Implementation On-die On-die L3 I/O-bus JBus (3.2 GB/s) JBus (3.2 GB/s) Interconnection NW Bandwidth: >200 GB/s Full 8*9 crossbar switch Memory controller 4-channels, on-die, 400 MT/s 4-channels, on-die, 400 MT/s Memory bandwidth 25.6 GB/s 42.7 GB/s TDP [W] 63 72 (est.) Multithreading 4-way/core 8-way/core Table: Main features of Sun’s UltraSPARC T2 processor

  31. 10.4 Literature (1) Gemini Kapil S., „Gemini,” 2003, http://www.hotchips.org/archives/hc15/3_Tue/12.sun.pdf UltraSPARC IV Boussard C., „Architecture des processeurs,” http://laser.igh.cnrs.fr/IMG/pdf/SUN-CNRS-archi-cpu-3.pdf Krewell K., „UltraSPARCIV Mirrors Predecessor, MPR, Nov. 10, 2003, http://www.sun.com/processors/feature/M45_UltraSPARC4_rpnt.pdf - „UltraSPARC IV Processor User’s Manual Supplement,” Ver. 1.0, Sun Microsystems, Apr. 2004, http://www.sun.com/processors/manuals/USIV_v1.0.pdf - UltraSPARC IV Processor Architecture Overview, Technical Whitepaper, Febr. 2004, http://www.sun.com/processors/whitepapers/us4_whitepaper.pdf UltraSPARC IV+ Boussard C.,„Architecture des processeurs,”,http://laser.igh.cnrs.fr/IMG/pdf/SUN-CNRS-archi-cpu-3.pdf Dixit A. et al., „Implementation and Productization of a 4th Generation 1.8 GHz Dual-Core SPARC V9 Microprocessor, Febr. 2006, http://www.ewh.ieee.org/r6/scv/ssc/Feb2006.pdf - „UltraSPARC IV+ Processor User’s Manual Supplement,” Ver. 1.0, Sun Microsystems, Oct. 2005, http://www.sun.com/processors/manuals/USIVplus_v1.0.pdf

  32. 10.4 Literature (2) UltraSPARC T1 Kongetira P., Aingaran K., Olukoton K., „Niagara: A 32-way Multithreaded SPARC Processor,” IEEE Micro, March-April 2005, pp. 21-29 Laudon J., „UltraSPARC T1: A 32-threaded CMP for Servers, 2006, http://www.cs.duke.edu/courses/fall06/cps220/lectures/UltraSparc_T1_Niagra.pdf - „UltraSPARC T1 Supplement to the UltraSPARC architecture 2005, Draft D2.0, March 2006, http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-P-EXT.pdf UltraSPARC T2 Golla R., „Niagara2: A Highly Threaded Server-on-a-Chip,” Oct. 2006, http://www.opensparc.net/pubs/preszo//06/04-Sun-Golla.pdf Grohoski G., „Niagara-2,” Aug. 2006, http://www.opensparc.net/pubs/preszo/06/HotChips06_09_ppt_master.pdf Kanter D.” Niagara II, The Hydra Returns,” http://realworldtech.com/page.cfm?ArticleID=RWT090406012516&p=4 McGhan H., „Niagara 2 Opens The Floodgates,” Microprocessor Report, Nov. 6, 2006, pp. 1-9

  33. 10.5. Fujitsu’s MC processors • SPARC64 VI • SPARC64 VII

  34. 10.5 Fujitsu’s MC processors Dual-core SPARC64 line • SPARC64 VI Olympus 90 nm 2007 Jupiter 65 nm • SPARC64 VII 2008

  35. 10.5 SPARC64 VI Reservation Stations (E: FX, F: FP, A: Adress, FP/SP: L/S) Execution Units (EX: FX, FL: PA, AGEN: Adr. Gen.) Figure: Block diagram of the SPARC64 VI Source:Inouo A., „Fujitsu SPARC64 VI, Fall Microprocessor Forum, Oct. 2006, Fujitsu Ltd., http://www.ssken.gr.jp/lib/nl/2006/sci/2/3_inouePPT_pre.pdf

  36. 10.5 SPARC64 VII (1) Figure: Block diagram of the SPARC64 VII Source:Inouo A., „Fujitsu SPARC64 VI, Fall Microprocessor Forum, Oct. 2006, Fujitsu Ltd., http://www.ssken.gr.jp/lib/nl/2006/sci/2/3_inouePPT_pre.pdf

  37. 10.5 SPARC64 VI/VII (2) Series SPARC64 Models SPARC64 VI (Olympus) SPARC64 VII (Jupiter) Cores 2*SPARC64V (enhanced) 4*SPARC64 VI (enhanced) Introduction 2007 2008 Technology 90 nm 65 nm Die size 421 mm2 464 mm2 Nr. of transistors 540 mtrs. n.A fc [GHz] 2.4 ~ 2.7 L2 Size/allocation 6 MB/shared 6 MB/shared Implementation On-die On-die L3 FSB [MT/s] Jupiter Bus Jupiter Bus TDP [W] 120 ~ 120 Multithreading 2-way 2-way Table: Main features of Fujitiu’s multi-core processors (superscalar RISC’s)

  38. 10.5 Literature Sparc64 line Inouo A., „Fujitsu SPARC64 VI,” Fall Microprocessor Forum, Oct. 2006, Fujitsu Ltd., http://www.ssken.gr.jp/lib/nl/2006/sci/2/3_inouePPT_pre.pdf Krewell K., „Fujitsu Makes SPARC See Double,” Microprocessor Report, Nov. 24, 2003, pp. 1-3 Krewell K., „SPARC’s Still Going Strong,” Microprocessor Report, Nov. 14, 2005, pp. 1-3 Maruyama T., „SPARC64 VI/VI+ Next Generation processor,” MPF, Oct. 2005, http://primeserver.fujitsu.com/primepower/event/report/pf-2005/pdf/mpf2005scr.pdf

  39. 10.6. HP’s MC processors • PA-8800 • PA-8900

  40. 10.6 HP’s dual-core processors Dual-core PA-8xxx processors (PA 8700-based) • PA-8800 Mako 130 nm 2/2004 Shortfin 130 nm • PA-8900 5/2005

  41. 10.6 PA-8800 (1) Figure: The underlaying PA-8700 core Source: E&M Computing, http://www.emet.co.il/events/amd/processors.pdf

  42. 10.6 PA-8800 (2) Figure: Block diagram of the PA-8800 Sources: Lostcircuits, Oct. 2001, http://www.lostcircuits.com/cpu/hp_pa8800/3dblock4.jpg Johnson D., „HP’s Mako processor”, Oct. 2001, ftp.parisc-linux.org/docs/whitepapers/mako_mpf_2001.pdf

  43. 10.6 PA-8800 (3) Figure: Floorplan of the Mako Source: Johnson D., „HP’s Mako processor”, Oct. 2001, ftp.parisc-linux.org/docs/whitepapers/mako_mpf_2001.pdf

  44. 10.6 PA-8800 (4) Figure: Contrasting the Floorplans of the PA-8700 and PA-8800 processors Sources: E&M Computing, http://www.emet.co.il/events/amd/processors.pdf Johnson D., „HP’s Mako processor”, Oct. 2001, ftp.parisc-linux.org/docs/whitepapers/mako_mpf_2001.pdf

  45. 10.6 PA-8900 (1) Models PA-8800(Mako) PA-8900(Shortfin) Dual/Quad-Core DC DC Achitecture PA-RISC 2.0 PA-RISC 2.0 Impl. of the cores Monolithic Monolithic Cores 2* PA-8700 2*PA-8700 Introduction 2/2004 5/2004 Technology 130 nm 130 nm Die size 366 mm2 366 mm2 Nr. of transistors 300 mtrs. 317 mtrs. fc [GHz] 0.8/1.0 1.1 L2 Size/allocation 32 MB/shared 64 MB/shared Implementation Tags on-chip, data off-chip Tags on-chip, data off-chip FSB 400 MT/s (16 B) 400 MT/s (16 B) Mem. Contr. Off-die Off-die TDP [W] 55 n.a. Table: Main features of HP’s PA-8800 and PA-8900 processors

  46. 10.6 Literature PA 8800/8900 MS, „HP PA-8800 RISCProcessor,” Lostcircuits, Oct. 2001, http://www.lostcircuits.com/cpu/hp_pa8800/2.shtml Johnson D., „HP’s Mako processor”, Oct. 2001, ftp.parisc-linux.org/docs/whitepapers/mako_mpf_2001.pdf Weissmann P., „The OpenPA Project,” First Edition, Berlin, 2007, http://www.openpa.net/openpa-print_1-0.pdf

  47. 10.7. RMI’ MC processors • XLR line (embedded)

  48. 10.7 RMI’s MC processors XLR line (embedded) 90 nm 5/2005 • XLR

  49. 10.7 XLR line (1) Aim: Embedded systems, such as processing cores from packet data transfers, cryptography functions, authentication operations, TCP/IP CRC calculations and network interface data management. Cores: 64-bit MIPS64 with XLR enhancements 4-way multithreaded up to 1.5 Gz 32KB L1 I$, 32 KB L1 D$ branch prediction Figure: XLR cores Source: http://www.razamicroelectronics.com/documents/XLR_PO_20050512_Product_Overview.pdf

  50. 10.7 XLR line (2) Figure: Architecture of the XLR family http://www.razamicroelectronics.com/documents/XLR_Family_2001PB_Product_Brief.pdf

More Related