330 likes | 491 Views
Inland water algorithms Candidates and challenges for Diversity 2. Daniel Odermatt, Petra Philipson , Ana Ruescas , Jasmin Geissler, Kerstin Stelzer, Carsten Brockmann. Context. Context. Content. Introduction Algorithm requirements State of the art Atmospheric correction
E N D
Inland water algorithmsCandidatesandchallengesforDiversity2 Daniel Odermatt, Petra Philipson, Ana Ruescas, Jasmin Geissler, Kerstin Stelzer, Carsten Brockmann
Content Introduction • Algorithm requirements • State of the art Atmospheric correction • Normalizing TOA radiances • Aerosol retrieval over water: C2R • Aerosol retrieval over land: Scape-M Water constituent retrieval • Band ratios • C2R Conclusions
Introduction Atmospheric correction requirements • Unsupervised, automatic processing • Computationally feasible • Validated use with MERIS images Water constituent retrieval requirements • … as above • Applicable to optically deep inland waters • Chlorophyll-a and suspended matter products
Normalizing TOA radiances Over clear waters, Latm exceedsLw by an order of magnitude Needs correction Over very turbid waters, signalstrength increases strongly Uncorrected analysis possible Recent studies achieved betterresults with FLH, MCI on Lw Schroeder (2005), Binding et al. (2010), Matthews et al. (2010)
Aerosol retrieval over water: C2R Explicit atmospheric correction: MERIS Lakes ATBD • TOA is corrected for pressure and O3 variations with MERIS metadata • TOSA consists of aerosols, cirrus clouds, surface roughness variations • BOA RLw is calculated by a forward-NN • 2 different models for atmosphere and water training dataset C2R background reflectance training range: • 0.01-100 g/m3 TSM • 0.01-43 mg/m3 CHL • 0.003-9.2 m-1 aCDOM Extended CoastColour training range: • 1000 g/m3 TSM • 100 mg/m3 CHL Doerffer & Schiller (2008)
Aerosol retrieval over water: C2R Odermatt et al. (2010)
Aerosol retrieval over land: Scape-M Scape-M • Modtran compiled LUTs • DEM input for topographic corrections • Retrieving rural aerosols and water vapour over land • Using 5 vegetation-soil mixture pixels per 30x30 km • Atmospheric properties are interpolated over lakes • Max. 1600 km2 lake area and 20 km shore distance Guanter et al. (2010)
Aerosol retrieval over land: Scape-M Guanter et al. (2010)
Summary: Atmospheric correction Automatic and accurate correction required in most cases Aerosol retrieval over water • Provides RT-based, accurate estimates for low reflectances • Application limited by training ranges Aerosol retrieval over land • Valuable backup for certain niches, e.g. retrieval of secondary chl-a peak • Limited by atmospheric, geographic and limnic constraints
Band ratio algorithms Derivedthroughempiricalregressionorbio-opticalmodeling Retrieve CHL, TSM, CDOM individually PrimaryCHL-absorption (OC) algorithms (400-550 nm) notapplicable SecondaryCHL-absorptionfeatureshiftingwithconcentration (681 nm)
Red-NIR band ratiosfor CHL Red edge! Gitelson et al., 2011: AzovSea
TSM sensitive bands a 13 g/m3 b 23 g/m3 c 62 g/m3 d 355 g/m3 e 651 g/m3 f 985 g/m3 Doxaran et al. (2002): Girondeestuary, Bordeaux
CDOM absorptionproperties • Ambiguitycanoccurwith all otheropticalparameters • Angstromvariationsovercontinents • Band ratiosmakeuse of 2-4 bands of thevisiblespectrum • Methodologicalconvergenceisnotsignificant Maritime vs. Balticseaaerosols Maritime vs. inlandaerosols Watanabe et al., 2011; Kusmierczyk-Michulec & Marks, 2000
Algorithmvalidationrangesreview To which optically complex waters do recent “Case 2” algorithms apply? The literature review includes: • Matchup validation studies • Constituent retrieval from satellite imagery • Optically deep and complex waters • Explicit concentration ranges and R2 • Published in ISI listed journals • Between Jan 2006 and May 2011 These criteria apply to a total of 52 papers. Odermatt et al. (2012)
Algorithmvalidationrangesreview The literature review aims to: • Quantify the use of recent algorithms and sensors • Derive algorithm applicability ranges for coastal and inland waters • Clarify the ambiguous use of attributes like “turbid” and “clear” Odermatt et al. (2012)
CHL band ratios 5 SeaWiFS 2 MODIS 1 GLI 8 MERIS 2 MODIS 1 HICO 2 TM/ETM+ 1 MERIS Odermatt et al. (2012)
TSM band ratios 5 empirical 5 semi-analytical Odermatt et al. (2012)
CDOM band ratios Odermatt et al. (2012)
Spectralinversionalgorithms Validation of C2R/algal_2/(FUB): • Numerous and independent • Adequate for low to medium concentrations • Inadequate for high concentrations Validation of other algorithms: • Limited in number and independence • Often restricted to “domestic” use • validated | falsified | threshold R2=0.6 Odermatt et al. (2012)
Variabilityrangescheme Retrievedconstituent concentrationlevel type contravariance Reading example: D‘Sa et al. (2006) retrievelowCDOM with 510, 565 nmbands at0.3-13.0 mg/m3 CHL and0.5-5.5 g/m3 TSM high CDOM TSM medium CHL low TSM CDOM 510, 565 nmD‘Sa et al., 2006 Odermatt et al. (2012)
Variabilityrangescheme band ratios for CDOM red-NIR band ratios forveryturbid TSM red-NIR band ratios foreutrophicCHL NN for intermediate concentrations OC band ratios foroligotrophic CHL Representingcoastalwatersofmostlyco-varyingconstituents Odermatt et al. (2012)
Diversityrecommendations blue-greenbands • wcretrieval: • FLH, MCI • Gitelson 2/3-band • atm. correction: • none • SCAPE-M • wcretrieval: • FUB • blue-greenbands • atm. correction: • C2R (+ICOL!) • FUB (+ICOL?) • wcretrieval & atm. correction: • C2R • FUB red-NIR bands FUB & blue-greenbands C2R & FUB
Conclusions Conclusions from the validation review: • Algorithm validity ranges are defined at high confidence (52 papers) • MERIS neural networks are sufficiently and independently validated • MERIS’ 708 nm band provides unparalleled accuracy for eutrophic waters Open issues for use of the findings in diversity 2: • How is the required preclassification applied? • Based on previousknowledgeor on-the-flight? • Spatio-temporallystaticordynamic? – based on previousknowledgeor iterative processing? • Should algorithm blending be applied as suggested by Doerffer et al. (2012)?
Aerosol retrieval over water Implicitatmosphericcorrection: FUB • Coupledwater-atmosphere RT model MOMO • Simulation of 5 opticalthicknesses of 8 aerosoltypes, 4 rel. humidities • Inversion of TOA reflectance where RSTOAis TOA reflectance in 12 MERIS bands x, y, z aretransformedobservationangles θsistheillumination angle P issurfacepressurefor Rayleigh correction W is wind speed T istransmissivity And x is a neuralnetworklearningpatterncorresponding to a set of concentrations • (Originally not meantforuseforinlandwaters, e.g. altitude)) Schroeder et al. (2007), Schroeder (2005)
IGARSS * Munich * 24.07.2012 CoastColour – Rio de la Plata L1b band 13 (865nm) L1b RGB Case2R SeaDAS l2gen CoastColour AC L2 3rd reprocessing
CoastColourneuralnetwork • CHL = 21*apig1.04for0.01-100 mg/m3 • TSM = (bp1+bp2)*1.73 for 0.01-1000 g/m3 • CDOM= ad+agfor 0.01-4 m-1 • kdcalculatedfromIOPsfor all 10 bands • z90istheaverage of the 3 lowestkd • Correspondsroughly to Secchidiscdepth • Inv NN trainedwith 6Mio. Hydrolightsimulations Rw(10 bands)IOPs • 5 IOPs: a_pig, a_gelbstoff, b_ particle; NEW: a_detritus, b_white • SIOP variationsby additional ratherthanhypotheticallyaccurateIOPs • Accountingfor T=0-36°C, S=0-42 ppt • Randomvariationspacingforbulk a and b instead of individualIOPs Doerffer et al. (2012)
FUB neuralnetwork Someconceptualdifferences • Uses MERIS level1 B TOA bands 1-7, 9-10, 12-14 • Static 3-component IOP model • Forward simulationsbased on coupledatmosphere-oceanmodel(MOMO) • NN fordirect RSTOA IOP inversion • NN forindirect RSTOA RSBOA IOPperformedsimilarly Schroeder, 2005; Schroeder et al., 2007
FUB neuralnetwork • Alternative architechture • Uses MERIS level1 B TOA bands 1-7, 9-10, 12-14 Schroeder, 2005; Schroeder et al., 2007 Bio-opticalmodeltrainingranges • CHL: 0.05-50 mg/m3 • TSM: 0.05-50 g/m3 • CDOM: 0.005-1 m-1 Partiallycovaryingconstituentsassumed
Validation examples Greifensee 2011 EUT/C2R/FUB 16 MERIS imageswithin 69 days CHL profilesacquiredautomatically Stratifiedcyanobacteriablooms Odermatt et al., 2012