850 likes | 1.54k Views
DEA (Data Envelopment Analysis). Toshiyuki Sueyoshi New Mexico Tech Dept. of Management. Data Envelopment Analysis. (1) Relative Comparison (2) Multiple Inputs and Outputs (3) Efficiency Measurement (0%-100%) (4) Avoid the Specification Error between Inputs and Outputs
E N D
DEA (Data Envelopment Analysis) Toshiyuki Sueyoshi New Mexico Tech Dept. of Management
Data Envelopment Analysis • (1) Relative Comparison • (2) Multiple Inputs and Outputs • (3) Efficiency Measurement (0%-100%) • (4) Avoid the Specification Error between • Inputs and Outputs • (5) Production/Cost Analysis
Case : 1 input – 1 output Table 1.1 : 1 input – 1 output Case
Efficiency Frontier E G Output F C A H B D 0 Employees Figure 1.1:Comparison of efficiencies in 1 input–1 output case
Efficiency Frontier E G Output F C A Regression Line H B D 0 Employees Figure 1.2 : Regression Line and Efficiency Frontier
Table 1.2 : Efficiency 1 = C > G > A> B > E > D = F > H = 0.4
Efficiency Frontier Output C D2 D1 D 0 Employees Figure 1.3 : Improvement of Company D
Case : 2 inputs – 1 output Table 1.3 : 2 inputs – 1 output Case
Production Possibility Set G F C A I Offices/Sales E D B Efficiency Frontier H 0 Employees/Sales Figure 1.4 : 2 inputs – 1 output Case
C A Offices/Sales A1 A2 B 0 Employees/Sales Figure 1.5 : Improvement of Company A
Case : 1 input – 2 outputs Table 1.4 : 1 input – 2 outputs Case
A1 B C A Efficiency Frontier D F Offices/Sales Production Possibility Set E1 G E 0 Customers/Offices Figure 1.6 : 1 input – 2 outputs Case
Case : Multiple inputs – Multiple outputs Table 1.5 : Example of Multiple inputs–Multiple outputs Case
Example Problem Table 1.6 : 2 inputs – 1 output Case
Efficiency Frontier E A D A1 F C 0 Figure 1.7 : Efficiency of DMU A
BCC model Variable Returns to Scale
BCC model: Dual Problem
Efficiency Frontier of CCR model Efficiency Frontier of BCC model (B) d c Output b (C) a (A) 0 Input Figure 2.1 : Efficiency Frontier and Production Possibility Set
Efficiency Frontier of CCR model Efficiency Frontier of BCC model f g g E c b b h h i i d e j j k P 0