1 / 20

commitment of profit & protection through value addition & resource management

COVARM Coordinator for Value Addition and Resource Management www.covarm.com , mail at : va.kumar@covarm.com / covarmcare@gmail.com call at : 91-98733-49421 / 91- 98730-79221. Presentation on CPCB`s Contradictory Directives ON INCINERATION IN DISTILLERIES

kalli
Download Presentation

commitment of profit & protection through value addition & resource management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COVARMCoordinator for Value Addition and Resource Management www.covarm.com , mail at : va.kumar@covarm.com / covarmcare@gmail.com call at : 91-98733-49421 / 91- 98730-79221 Presentation on CPCB`s Contradictory Directives ON INCINERATION IN DISTILLERIES SOME of the references are abstracts of information available on internet V. A. Kumar Head - Coordination commitment of profit & protection through value addition & resource management

  2. COVARMCoordinator for Value Addition and Resource Management HOW SPENTWASH IS GENERATED • Sulfur dioxide, chlorine, ammonium bisulfite or commercial FDA-approved biocides are sometimes used to disinfect cane juice. • Milk of lime (a slurry of calcium hydroxide) and phosphoric acid is added to cane juice during the clarification step; however, lime is mostly removed by filtration during clarification. • Several other chemicals are used in sugar manufacturing process at different stages. • Molasses are one of the final by-product of sugar manufacturing. • Fermentation followed by distillation is the most common naturally occurring biological process used to manufacture ethanol. • Yeast strains are traditionally used to perform the alcoholic fermentation of diluted molasses. Other genetically modified microorganisms or enzymes are also used sometimes in the process. • The pH of the fermentation broth may be lowered (pH = 4–5) using sulfuric acid to minimize the risk of bacterial contamination. • In addition, antibiotics (e.g., penicillin) and bactericides (e.g., chlorine dioxide) are potentially added to control bacteria present in the molasses feedstock. • Most of the above steps & process additives are involved in generation of spent wash from cane molasses. SCIENCE OF INCINERATION

  3. CPCB GUIDELINES ON INCINERATION SCIENCE OF INCINERATION

  4. COVARMCoordinator for Value Addition and Resource Management SCIENCE OF INCINERATION ALL DISTILLERY SLOP BURNING BOILERS ARE C0MMON INCINERATION BOILERS USING SOLID WASTE BAGASSE OR R/H OR COAL ETC AND LIQUID SLOP AS FUEL. IN DISTILLERY INDUSTRY, EXCEPT WHERE SUGAR BOILERS ARE USED FOR UTILITY IN SUGAR SEASON, COMMON BOILER PRESSURE IS TYPICALLY 10 TO 45 KG. OVIOUSLY TEMPERATURES ARE ALSO LOW. OPERATING RANGE OF INCINERATION BOILERS OFFERED BY DIFFERENT SUPPLIERS IN INDIA ARE IN THE RANGE: • Operating capacity- 10 to 75 TPH • Pressure - 10 to 66 kg/cm g • Temperature - Saturated or from 350 to 4800 C • Support fuels - Indian coal, imported coal, wood chips, petcoke and bagasse

  5. CPCB GUIDELINES ON INCINERATION SCIENCE OF INCINERATION

  6. CPCB DIRECTIVES ON INCINERATION SEARCH GOOGLE FOR “GENERAL ANALYSIS OF SPENT WASH AFTER EVAPORATION,” ON 1ST PAGE SL. 8 WILL APPEAR USE OF HAZARDOUS WASTE AS FUEL - PowerShow.com www.powershow.com/.../USE_OF_HAZARDOUS_WASTE_AS_FUEL_.. Spent Wash generation depends on: Type of fermentation process (Batch or Continuous) Type of distillation process (Atmospheric or Multi-pressure) ... – A free . WHEN YOU OPEN THIS A PowerShow.com page will open up and this ppt. presentation open up SLIDE 1 SLIDE 52

  7. INCINARATION AS PROMOTED IN INDIA ETHANOL INDUSTRY IS BEING FORCED TO GO FOR A TECHNOLOGY SOLUTION FOR ZERO DISCHARGE WHICH IS NOT A REAL SOLUTION AND NEED A LOT MORE RESEARCH BEFORE BEING ACCEPTED AS A FINAL SOLUTION SCIENCE OF INCINERATION

  8. SCIENCE OF INCINERATION CPCB AGREES THAT SPENT WASH IS HAZARDOUS EFFLUENT IN SLIDE 29 CPCB HAVE ADMITTED THAT since June 2008 many distilleries have been directed to adopt either concentration-incineration system or co-processing for achieving ZLD. IN SLIDE 42 & 43 CPCB AGREES THAT DISTILLERY SPENT WASH CONTAIN ABOVE 2% CHLORINE & APPROX. 0.004% Cu BUT RESEARCHES HAVE PROVED THAT ANY EFFLUENT (SPENT WASH IN THIS CASE) CONTAINING HALOGEN COMPOUNDS & COPPER TRACES, IF INCINERATED, PRODUCES DIOXIN. AND DIOXINS ARE PROVEN CANCEROUS COMPOUNDS.

  9. COVARMCoordinator for Value Addition and Resource Management • smokestacks of the incinerator. Dioxin particles are then carried by the wind until they drop onto land or • water. We now know that dioxin can travel thousands of miles. Grazing animals and fish ingest the dioxin, but • they cannot break it down, so it then travels up the food chain. Ninety percent of human exposure to dioxin • occurs through our diets of meat, dairy products, eggs and fish. • Dioxin builds up in fatty tissue. Because of the high fat content of breast milk, nursing infants are exposed to • about 50 times the adult dose and may receive more than 10 percent of their total lifetime exposure during the • nursing period, a time when they are most vulnerable to the toxic effects of dioxin. • Every person has some amount of dioxin in their body. This is because dioxin, like DDT, does not readily break • down in the environment. It also accumulates in the body. Continual low-level exposure leads to a "build up" in • tissues. • WHAT IS DIOXIN • Dioxin is the common name for a class of 75+ chemicals. • Dioxins have no commercial use. • It is a toxic waste product formed when waste containing chlorine is burned. • Dioxin particles emitted with smokestack of incinerator does not readily break down in the environment and are carried by the wind. • Grazing animals and fish ingesting dioxin, cannot break it down, so it travels up the food chain. • Continual low-level exposure may leads to a "build up" in tissues resulting into several health problems.

  10. COVARMCoordinator for Value Addition and Resource Management EFFECT OF DIOXINE ON HUMAN HEALTH Cancer: Dioxin is a proven human carcinogen ( International Agency for Research on Cancer (IARC). Dioxin causes Liver, lung, stomach, soft and connective tissue cancers as well as Non-Hodgkins’slymphoma. Immune System Effects: Low exposures to dioxin result in increased susceptibility to bacterial, viral and parasitic diseases. Reproductive and Development Effects : Dioxin exposure causes Human studies report lowered testosterone levels in human and birth defects in their children. Nursing human infants exposed to high dioxin concentrations had significantly lower levels of the thyroid hormone necessary for development of the brain. Hormone Disruption: Dioxin behaves like a hormone by attaching to a receptor and altering the genetic activity in cells. Since human hormones can exert effects at levels of parts per trillion, small amounts of dioxin could cause a chain reaction in the body.

  11. SCIENCE OF INCINERATION OPEN ON GOOGLE SEARCH http://www.ncbi.nlm.nih.gov/pubmedcommons/ THE SITE THAT OPENS UP IS This is PublMED.gov site and official site of US National Library of Medicine & National Institutes of Health PubMed Commons enables authors to share opinions and information about scientific publications in PubMed.

  12. SCIENCE OF INCINERATION YOU NEED TO ENLARGE ABSTRACT OF THIS WORK PASTED BELOW, WHICH SAYS CERTAIN VERY IMPORTANT THINGS OTHERWISE IGNORED WHILE ISSUEING DIRECTIVES FOR INCINERATION TO DISTILLERIES. ADDITIONALLY, DIRECTIVE 2000/76/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 December 2000 on the incineration of waste from Official Journal of the European Communities need to be studied before such directives. There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste samples were burned, were analyzed by gas chromatography/mass spectrometry. Formation of total PCDFs was much higher than that of PCDDs in all samples. The total PCDFs comprised 70%-90% of the total dioxin formed. The amount of total PCDFs formed ranged from 0.78 ng/g (newspaper) to 8,490ng/g (PVC burned in high CO concentration). The amount of total PCDDs formed ranged from 0.02ng/g (newspaper) to 430ng/g (PVC). Coplanar PCBs were found at the lowest level of the dioxins formed. Their formation levels ranged from 0ng/g (newspaper) to 77.6ng/g (PVC). It is obvious that the samples with either inorganic or organic chlorides produced much more dioxins than the sample without chlorides when incinerated under similar conditions. It is not clear how inorganic and organic chloride contribute differently to dioxin formation. Among the metals examined, copper seems to have higher activity toward dioxin formation than other metals. It acted not only as a catalyst but also as a transmitter of heterogeneous chlorine. The toxicity equivalence quantity (TEQ) values generally correlated with the amount of chlorine content in the samples and the amount of dioxin formed in exhaust gases from an incinerator. When the same sample was incinerated at different temperatures, however, the sample burned at low temperature yielded a higher TEQ value than did the sample burned at high temperature. The samples that did not contain chlorine or were not combusted with chlorides exhibited low TEQ values. In contrast, samples with high chlorine content, such as PVC (51.3%), gave high TEQ values. Combustion temperatures may play an important role in dioxin formation in exhaust gases from the incineration of waste materials. However, no significant relationship between dioxin formation and chamber temperatures was reported in the core articles. However, It is obvious that dioxin formation occurred at temperatures above 450'C and was reduced significantly at temperatures above 850 degrees C. The reaction occurring in an incinerator is extremely complex, and there are many factors in addition to combustion temperature influencing dioxin formation. Even though it is possible to hypothesize reasonable formation mechanisms of dioxins produced in exhaust gases according to the results obtained from experiments in classical chemistry, the reactions involved in an incinerator are extremely complex and heterogeneous. More detailed investigation of the many individual factors influencing dioxin formation is needed to find ways to reduce their formation in individual and municipal incinerators.

  13. EUROPEAN COMMISSIONS COMMENT ON INCINERATION OF HALOGENOUS SUBSTRATES THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN UNION, Having regard to the Treaty establishing the European Community, and in particular Article 175(1) thereof, (17) Member States should take into account Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulfur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air (4) when implementing this Directive. (18) The incineration of hazardous waste with a content of more than 1 % of halogenated organic substances, expressed as chlorine, has to comply with certain operational conditions in order to destroy as many organic pollutants such as dioxins as possible. (19) The incineration of waste which contains chlorine generates flue gas residues. Such residues should be managed in a way that minimizes their amount and harmfulness. (27) The co-incineration of waste in plants not primarily intended to incinerate waste should not be allowed to cause higher emissions of polluting substances in that part of the exhaust gas volume resulting from such co-incineration than those permitted for dedicated incineration plants and should therefore be subject to appropriate limitations. (28) High-standard measurement techniques are required to monitor emissions to ensure compliance with the emission limit values for the pollutants. Definitions • For the purposes of this Directive: • (1) ‘waste’ means any solid or liquid waste as defined in Article 1(a) of Directive 75/442/EEC; • (2) ‘hazardous waste’ means any solid or liquid waste as defined in Article 1(4) of Council Directive 91/689/EEC of 12 December 1991 on hazardous waste (1). • (3) ‘mixed waste’ means waste from households as well as commercial, industrial and institutional waste, which because of its nature and composition is similar to waste from households, but excluding fractions indicated in the Annex to Decision 94/3/EC (4) under heading 20 01 that are collected separately at source and excluding the other wastes indicated under heading 20 02 of that Annex; • (4) ‘incineration plant’ means any stationary or mobile technical unit and equipment dedicated to the thermal treatment of wastes with or without recovery of the combustion heat generated. This includes the incineration by oxidation of waste as well as other thermal treatment processes such as pyrolysis, gasification or plasma processes in so far as the substances resulting from the treatment are subsequently incinerated. This definition covers the site and the entire incineration plant including all incineration lines, waste reception, storage, on site pretreatment facilities, waste- fuel and air supply systems, boiler, facilities for the treatment of exhaust gases, on- site facilities for treatment or storage of residues and waste water, stack, devices and systems for controlling incineration operations, recording and monitoring incineration conditions; • (5) ‘co-incineration plant’ means any stationary or mobile plant whose main purpose is the generation of energy or production of material products and: — which uses wastes as a regular or additional fuel; or — in which waste is thermally treated for the purpose of disposal. SCIENCE OF INCINERATION

  14. SCIENCE OF INCINERATION • As per ShibamotoT1, Yasuhara A, & Katami T • The reaction occurring in an incinerator is extremely complex. • Inorganic and organic chloride contribute differently to dioxin formation. Among the metals examined, copper seems to have higher activity toward dioxin formation than other metals. It acts not only as a catalyst but also as a transmitter of heterogeneous chlorine. • Combustion temperatures may play an important role in dioxin formation in exhaust gases from the incineration of waste materials. Other key players in dioxin formation could be O2 concentrations, and CO concentrations. FOR INCINERATION OR CO-PROCESSING : • Maximum PCDD/F formation occurs at 300-400 °C, little can be detected below 250 or above 500 °C. • BOILER NEED TO BE SUITABLY OF HIGH TEMPERATURE IN CASE CHLORINE IS AVAILABLE IN THE FUEL MEANT FOR INCINERATION. • BESIDES residence time should be 4 – 5 seconds in an oxygen–rich atmosphere. • MOST OF THE INCINERATION BOILERS OFFERED TO OR INSTALLED IN INDIAN DISTILLERY DOES NOT MEETS THE TEMPERATURE CRITERIA TO REDUCE DIOXINE FORMATION.

  15. INDUSTRIES UNDER "RED" CATEGORY WITH INTER-RELATED CONCERN CPCB`S CONTRADICTORYDIRECTIVES • INDUSTRIES LISTED IN SL. 2, 5, 14, 24, 26, 29, 38, 40 & 57 ARE RED • BIOGAS (METHANE) GENERATION IS ALLOWED WHICH FALLS UNDER RED CATEGORY. • EFFLUENT OFONE RED CATEGORY(5)IS SUGGESTED TO BE CO-PROCESSED IN ANOTHER RED CATEGORY (2) INDUSTRY • RED CATEGORY(5) INDUSTRY IS ASKED TO INSTALL ANOTHER RED CATEGORY PLANT(38) FOR EFFLUENT TREATMENT. • INDUSTRY OF HALOGEN & THEIR COMPOUND IS LISTED AS RED.

  16. CPCB DIRECTIVES ON INCINERATION NOW, PLEASE REVISIT CPCB SLIDE 34 PROMOTING JUSTIFICATION OF CO-PROCESSING, WHICH SAYS THAT High temperatures (1100 O C)+ and residence time of 4 – 5 seconds in an oxygen–rich atmosphere ensure the destruction of organic compounds. SLIDE 48 IN SLIDE 48, CPCB SAYS • * For Particulate matter: As per consent order issued by concerned SPCB. - For CO. TOC, NOx, HCl, SO2, HF, Total dioxins and furans, Cd+Tl+ their compounds, Hg and its Compounds, Sb+AS+Pb+Co+Cr+Cu+Mn+Ni+V+ their compounds: Emission values during co-processing should not exceed the base line emissions i.e. from pre co-processing levels.

  17. POWERS OF POLLUTION CONTROL AGENCIES PLEASE READ ABOUT THE POWER CONFERRED TO SPCB`S • EVEN IF YOU AGREE FOR CONVERTING YOUR • WATER POLLUTANT INTO • AIR POLLUTANTS. ARE YOU SAFE & ASSURED ABOUT YOUR INVESTMENT IN INCINERATION PLANT ? DON`T YOU FEEL THAT MORE RESEARCH IS NEEDED BEFORE A FINAL & GREEN DECISION ON ZLD OPTION

  18. COVARMCoordinator for Value Addition and Resource Management 21[22A. Power of Board to make application to court for restraining person from causing air pollution. (1) Where it is apprehended by a Board that emission of any air pollutant, in excess of the standards laid down by the State Board under clause (g) of sub-section (1) of section 17, is likely to occur by reason of any person operating an industrial plant or otherwise in any air pollution control area, the Board may make an application to a court, not inferior to that of a Metropolitan Magistrate or a Judicial Magistrate of the firstclass for restraining such person from emitting such air pollutant. (2) On receipt of the application under sub-section (1), the court may make such order as it deems fit. (3) Where under sub-section (2), the court makes an order restraining any person from discharging or causing or permitting to be discharged the emission of any air pollutant, it may, in that order,- • (a) direct such person to desist from taking such action as is likely to cause emission; • (b) authorize the Board, if the direction under clause (a) is not complied with by the person to whom such direction is issued, to implement the direction in such manner as may be specified by the court. (4) All expenses incurred by the Board in implementing the directions of the court under clause (b) of sub-section (3)shall be recoverable from the person concerned as arears of land revenue or of public demand.

  19. EVEN IF YOU AGREE FOR CONVERTING YOUR WATER POLLUTANT INTO AIR POLLUTANT. IN INCINERATION WATER POLLUTION IS CONVERTED INTO AIR POLLUTION YOUR INVESTMENT DECISION IN INCINERATION IS VULNERABLE IT IS TIME TO ASK QUESTIONS ON CPCB DIRECTIVES ON INCINERATION

  20. TILL TIME, WHEN A PROVEN SOLUTION IS OFFERED TO INDUSTRY, RECOVERING WATER USING SUITABLE TECHNOLOGY AND SCIENTIFICALLY MANAGING BIO-COMPOSTING PROCESS TO ACHIEVE ZERO LIQUID DISCHARGE IS STILL BEST SOLUTION.AND WE CAN PROVE THIS.THANKSFOR YOUR ATTENTIONIT`S TIME TO WORK TOGETHEROUR NEXT EFFORT WILL BE TO PROVE THAT BIO-COMPOSTING CAN BE DONE YEAR – ROUND AND WE WANT TO WORK ON APPROVAL OF CPCB FOR 330 DAY`S PERMISSION WITH BIO-COMPOSTING . COVARM : COMMITMENT OF PROFIT & PROTECTION THROUGH VALUE ADDITION & RESOURCE MANAGEMENT

More Related