1 / 49

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

Chabot Mathematics. §7.1 MultiVar Functions. Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu. 6.3. Review §. Any QUESTIONS About §6.3 → Improper Integrals Any QUESTIONS About HomeWork §6.3 → HW-03. §7.1 Learning Goals.

kalyca
Download Presentation

Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chabot Mathematics §7.1 MultiVarFunctions Bruce Mayer, PE Licensed Electrical & Mechanical EngineerBMayer@ChabotCollege.edu

  2. 6.3 Review § • Any QUESTIONS About • §6.3 → Improper Integrals • Any QUESTIONS About HomeWork • §6.3 → HW-03

  3. §7.1 Learning Goals • Define and examine functions of two or more variables • Explore graphs and level curves of functions of two variables • Study the Cobb-Douglas production function, isoquants, and indifference curves in economics

  4. Functions of 2+ Variables Functional Machinery

  5. 2Var Fcn → Unique Assignment • DEFINITION: A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f (x,y). • The set D is the domain of f and its range is the set of values that f takes on, that is,

  6. 2Var Fcn → Unique Assignment • We often write z=f (x, y) to make explicit the value taken on by f at the general point (x, y) . • The variables x and y are INdependent variables • z is the DEpendent variable. • Note that Assignment is Unique; i.e., and Input Values, x & y, Will Produce exactly ONE value of z

  7. 2Var Fcn → Unique Assignment • YES, a 2Var Function • NO, NOT a 2Var Function NONunique Assignment

  8. Example: f(x,y) Domain & Plot • Given 2Var Fcn: • Find Function Domain • Plot Over: x 0→10 & y 0→5 • SOLUTION • For Domain description look for cases where any term is NOT Defined • ln(x) not defined for x ≤ 0 • No restriction on y as ey defined for all real numbers

  9. Example: f(x,y) Domain & Plot • Thus the Domain • For the Plot, Make 3D “T-Table”

  10. Example: f(x,y) Domain & Plot • The plot by MATLAB

  11. % Bruce Mayer, PE % MTH-15 • 13Jan14 % MTH15_Quick_3Var_3D_Plot_BlueGreenBkGnd_140113.m % clear; clc; clf; % clf clears figure window % % The Domain Limits xmin = 0; xmax = 10; % BASE max & min2 ymin = 0; ymax = 5; NumPts = 40 % The GRID ************************************** xx = linspace(xmin,xmax,NumPts); yy = linspace(ymin,ymax,NumPts); [x,y]= meshgrid(xx,yy); % The FUNCTION*********************************** z = x.*exp(y) + log(x+1); % % the Plotting Range = 1.05*FcnRange zmin = min(min(z)); zmax = max(max(z)); % the Range Limits R = zmax - zmin; zmid = (zmax + zmin)/2; zpmin = zmid - 1.025*R/2; zpmax = zmid + 1.025*R/2; % % The ZERO Lines % zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ypmin*1.05 ypmax*1.05]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green mesh(x,y,z, 'LineWidth', 2),grid, axis([xminxmaxyminymaxzpminzpmax]), grid, box, ... xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y'), zlabel('\fontsize{14}z = f(x,y)'),... title(['\fontsize{16}MTH16 • Bruce Mayer, PE',]),... annotation('textbox',[.73 .05 .0 .1 ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 3Var 3D Plot.m','FontSize',7) MATLAB Code

  12. Example  Cobb-Douglas Model • The Cobb-Douglas productivity Model for a given factory says that the production P in a market, in units produced in a given time period, is a function of the labor L and capital K used in production • Where • L measured in Worker-Hours • K measured in total-k$ • P measured in Units/Month

  13. Example  Cobb-Douglas • Find the production level when 30 workers are employed at full-time (8-hour days for 22 working days a month) and $100,000 (Capital Cost) of machinery are required. •  In order to produce 10,000 units each month using the same capital as in part (a), how many workers would need to be employed at full-time?

  14. Example  Cobb-Douglas • SOLUTION • Use the Model to Find Pa • Thus There were about 5,876 units produced each month

  15. Example  Cobb-Douglas • Need to Increase the Production to 10000 Units/monwithOUT purchasing any more Machinery; i.e., K = $100k • Solve the Cobb-Douglas Eqn for L

  16. Example  Cobb-Douglas • The New WorkLoad • 10,728 worker-hours (almost 61 full-time equivalent workers) would achieve the goal of 10,000 units each month

  17. Level Curves • Level Curves are described by 3D Lines of “Constant z” • The most common Level Curve, or IsoQuantity Line, plots are earth-elevation TopoGraphical Maps TheLevels

  18. Example  Surface & Contours • Level-Curves can be found by “Slicing” the Surface Plot • Surface Plots can be found by “Connecting” the IsoLevel Contour Plot Levels

  19. % Bruce Mayer, PE % MTH-15 • 13Jan14 % MTH15_Quick_3Var_3D_Plot_BlueGreenBkGnd_140113.m % clear; clc; clf; % clf clears figure window % % The Domain Limits xmin = -1; xmax = 1; % BASE max & min2 ymin = -1; ymax = 1; NumPts = 50 % The GRID ************************************** xx = linspace(xmin,xmax,NumPts); yy = linspace(ymin,ymax,NumPts); [x,y]= meshgrid(xx,yy); % The FUNCTION*********************************** n = 3 z = exp(-n*(x.^2 + y.^2)); % HyperBolic Paraboloid % the Plotting Range = 1.05*FcnRange zmin = min(min(z)); zmax = max(max(z)); % the Range Limits R = zmax - zmin; zmid = (zmax + zmin)/2; zpmin = zmid - 1.025*R/2; zpmax = zmid + 1.025*R/2; % % the Domain Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green mesh(x,y,z, 'LineWidth', 2),grid, axis([xminxmaxyminymaxzpminzpmax]), grid, box, ... xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y'), zlabel('\fontsize{14}z = f(x,y)'),... title(['\fontsize{16}MTH16 • Bruce Mayer, PE',]),... annotation('textbox',[.73 .05 .0 .1 ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 3Var 3D Plot.m','FontSize',7) % % display('Plot PAUSED - hit any key to continue') pause % contour3(x,y,z,20), grid on, axis([xminxmaxyminymaxzpminzpmax]), box, ... xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y'), zlabel('\fontsize{14}z = f(x,y)'),... title(['\fontsize{16}MTH16 • Bruce Mayer, PE',]),... annotation('textbox',[.73 .05 .0 .1 ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 3Var 3D Plot.m','FontSize',7) hold on h = findobj('Type','patch'); set(h,'LineWidth',2) hold off MATLAB Code

  20. Level Curves Quantified • A function, z = f(x,y), has level curves consisting of graphs in the xy-plane for fixed, or Constant, values of z. • In other words a level curve of f at C is all points that satisfy the equation

  21. Example  WindChill City • A common Math Model for the wind chill Factor is given by • where V is the wind velocity in mph (V>5), and T is the temperature in °F • If the temperature remains fixed at 40 °F and the wind speed is 10 mph, what effect does doubling the wind speed have on wind chill?

  22. Example  WindChill City • SOLUTION • Need to calculate the difference between wind chill between conditions: • T = 40 °F, V = 10 mph • T = 40 °F, V = 20 mph • At 10 mph

  23. Example  WindChill City • Now at 20 mph • Thus Doubling the wind speed reduced wind chill by a little over three °F • Note that is was an IsoTemperature, or IsoThermal Situation

  24. Example  WindChill City • Find Answer on Contour plot

  25. % Bruce Mayer, PE % MTH-16 • 13Jan14 % MTH15_Quick_3Var_3D_Plot_BlueGreenBkGnd_140113.m % clear; clc; clf; % clf clears figure window % % The Domain Limits xmin = 20; xmax = 60; % °F ymin = 5; ymax = 25; % mph NumPts = 50 % The GRID ************************************** xx = linspace(xmin,xmax,NumPts); yy = linspace(ymin,ymax,NumPts); [x,y]= meshgrid(xx,yy); % The FUNCTION*********************************** z = 35.74 + 0.6125*x - 35.75*y.^0.16 + 0.4275*x.*y.^0.16; % % the Plotting Range = 1.05*FcnRange zmin = min(min(z)); zmax = max(max(z)); % the Range Limits R = zmax - zmin; zmid = (zmax + zmin)/2; zpmin = zmid - 1.025*R/2; zpmax = zmid + 1.025*R/2; % % the Domain Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green [C,h]=contour(x,y,z,15), grid on, axis([xminxmaxyminymax]),... xlabel('\fontsize{14}T (°F)'), ylabel('\fontsize{14}V (mph)'), zlabel('\fontsize{14}WindChill (°F)'),... title(['\fontsize{16}MTH16 • WindChill (°F)',]),... annotation('textbox',[.73 .05 .0 .1 ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 3Var 3D Plot.m','FontSize',7) hold on set(h,'LineWidth',2) %[C,h] = contour(x,y,z); set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2) hold off Contour Plot MATLAB

  26. WindChill Surface Plotted

  27. % Bruce Mayer, PE % MTH-16 • 13Jan14 % MTH15_Quick_3Var_3D_Plot_BlueGreenBkGnd_140113.m % clear; clc; clf; % clf clears figure window % % The Domain Limits xmin = 20; xmax = 60; % °F ymin = 5; ymax = 30; % mph NumPts = 50 % The GRID ************************************** xx = linspace(xmin,xmax,NumPts); yy = linspace(ymin,ymax,NumPts); [x,y]= meshgrid(xx,yy); % The FUNCTION*********************************** z = 35.74 + 0.6125*x - 35.75*y.^0.16 + 0.4275*x.*y.^0.16; % HyperBolic Paraboloid % the Plotting Range = 1.05*FcnRange zmin = min(min(z)); zmax = max(max(z)); % the Range Limits R = zmax - zmin; zmid = (zmax + zmin)/2; zpmin = zmid - 1.025*R/2; zpmax = zmid + 1.025*R/2; % % the Domain Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green mesh(x,y,z, 'LineWidth', 2),grid, axis([xminxmaxyminymaxzpminzpmax]), grid, box, ... xlabel('\fontsize{14}T (°F)'), ylabel('\fontsize{14}V (mph)'), zlabel('\fontsize{14}WindChill (°F)'),... title(['\fontsize{16}MTH16 • WindChill Function',]),... annotation('textbox',[.73 .05 .0 .1 ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 3Var 3D Plot.m','FontSize',7) % Surface Plot MATLAB

  28. WindChill Plot by MuPAD

  29. MuPAD code • Bruce Mayer, PE • MTH15 • 13Jan14 • 3D_3_Dimensional_Fcn_Plot_BMayer_1401.mn • Change BackGround: Scene3d → Style → BackGroundColor • WC := 35.74 + 0.6125*x - 35.75*y^0.16 + 0.4275*x*y^0.16 • plotfunc3d(WC, x = 20..60, y = 5..25, GridVisible = TRUE,LineWidth = 0.04*unit::inch, Width = 320*unit::mm, Height = 180*unit::mm,AxesTitleFont = ["sans-serif", 24],TicksLabelFont=["sans-serif", 16]):

  30. 3D Graphing by Computer • Excel can make Nice 3D Plots for People who do not have MATLAB & MuPAD • To make an Excel Plot, first construct a Basal, or Base Plane • Next Enter “z” formula and calculate • Use Insert→Charts→Surface to Create the Chart • And then Fine Tune

  31. 3D Computer Graphing (Excel) • Basal Plane Detail for =-EXP(-3*(H$7^2/1.8+ $F9^2))

  32. Resulting 3D Excel Graph 3D_Surface_Plot_1401.xlsx

  33. Computer Graphics FootBall • From the National FootBall League RuleBook: • Rule 2 The Ball • Section 1 • BALL DIMENSIONS • The Ball must be a “Wilson,” hand selected, bearing the signature of the Commissioner of the League, Roger Goodell. • The ball shall be made up of an inflated (12 1/2 to 13 1/2 pounds) urethane bladder enclosed in a pebble grained, leather case (natural tan color) without corrugations of any kind. It shall have the form of a prolate spheroid and the size and weight shall be: long axis, 11 to 11 1/4 inches; long circumference, 28 to 28 ½ inches; short circumference, 21 to 21 1/4 inches; weight, 14 to 15 ounces.

  34. Computer Graphics FootBall • A FootBall is an Ellipsoid of Revolution • Using the RuleBook Specs:

  35. Computer Graphics FootBall • MATLAB Makes Easy Vertical Revolution • The FootBall Ellipse-Equation: • Solvingfor y • FootBall Plots on Next Slide

  36. Computer Graphics FootBall

  37. MATLAB FootBall Code % Bruce Mayer, PE % MTH-15 • 01Aug13 • Rev 11Sep13 % MTH15_Quick_Plot_BlueGreenBkGnd_130911.m % clear; clc; clf; % clf clears figure window % % The ELLIPSE ************************************** a = 5.5; b = 4.5; x = linspace(-a,a, 10000); y = sqrt(b^2-(x*b/a).^2); %*********************************** % The Domain Limits xmin = -0.05*b; xmax = 1.05*b; % the Plotting Range = 1.05*FcnRange ymin = min(y); ymax = max(y); % the Range Limits R = 2*a; ymid = 0; ypmin = ymid - 1.025*R/2; ypmax = ymid + 1.025*R/2 % % The ZERO Lines zxh = [xminxmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ypmin*1.05 ypmax*1.05]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(y,x, 'LineWidth', 4),grid, axis([xminxmaxypminypmax]),... xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x)'),... title(['\fontsize{16}MTH16 • FootBall',]),... annotation('textbox',[.53 .05 .0 .1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 Quick Plot BlueGreenBkGnd 130911.m','FontSize',7) hold on plot(zxv,zyv, 'k', zxh,zyh, 'k', 'LineWidth', 2) hold off % Bruce Mayer, PE % MTH-15 • 13Jan14 % MTH15_Quick_3Var_3D_Plot_BlueGreenBkGnd_140113.m % clear; clc; clf; % clf clears figure window % % The Domain Limits xmin = -10; xmax = 10; % BASE max & min2 ymin = -10; ymax = 10; % The ELLIPSE ************************************** a = 5.5; b = 4.5; t = linspace(-a,a, 80); [x,y,Z] = cylinder(sqrt(b^2-(t*b/a).^2)); z = 2*a*Z % scale 0-1 to 0-2b %*********************************** % % the Domain Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green mesh(x,y,z, 'LineWidth', 2),grid on, box, ... xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y'), zlabel('\fontsize{14}z = f(x,y)'),... title(['\fontsize{16}MTH16 • FootBall',]),... annotation('textbox',[.73 .05 .0 .1 ], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'MTH15 3Var 3D Plot.m','FontSize',7) % %

  38. WhiteBoard Work 175 ft • Problems From §7.1 • P47 → Skin Surface Area • P48 → WindMills • Smith-PutnamWindMill • Circa 1941 • Grandpa's Knob in Castleton, Vermont • P49 → Human Energy Expenditure

  39. All Done for Today SpiralingFootBall

  40. Chabot Mathematics Appendix Do On Wht/BlkBorad Bruce Mayer, PE Licensed Electrical & Mechanical EngineerBMayer@ChabotCollege.edu –

  41. P7.1-47 Skin Surface Area • Skin Area Formula based on easy to perform Measurements • Where • S ≡ Surface Area in sq-meters • W ≡ Person’s mass in kg • H ≡ Height in CentiMeters (cm) • Make Contour Plot S(W,H), and find Height for W=18.37kg & S=0.048m2

  42. S(15.8kg,87.11cm) • By MuPad • S := 0.0072*(W^0.425)*(H^0.725) • Sa = subs(S,W=15.83,H=87.11) • In Sq-Meters

  43. Basal Metabolism • The Harris-Benedict Power Eqns for Energy per Day in kgCalories • Human Males • Human Females • h ≡ hgt in cm, A ≡ in yrs, w ≡ weight in kg

  44. Basal Metabolism • Find • Ba := subs(Bm, w=90,h=190,A=22 • Find • Bb := subs(Bf, w=61,h=170,A=27)d

  45. Basal Metabolism • Find • Ac := subs(Am, wm=85, hm=193, Bmm=2108) • Find • Ad := subs(Af, wf=67, hf=173, Bff=1504)

More Related