300 likes | 322 Views
Explore the characteristics, origins, and impacts of African Easterly Waves, major synoptic disturbances in the tropics. Learn about the African Easterly Jet, zonal variations, and composite structures. Discover research findings and observations on these crucial weather phenomena.
E N D
551 Tropical Advanced Topics
Trade Wind or Subtropical Inversion • The height of the base of this inversion varies from about 500 m at the eastern extremities of the subtropical highs to about 2000 m at the western and equatorial extremities. • In the equatorial trough zone and over the western portions of the trade-wind belt, the inversion does not exist as a mean condition, although it appears in certain weather patterns. • The inversion is generally strongest when the height of its base is lowest, and vice versa. The thickness of the inversion layer varies from tens of m to more than 1000 m. • On the average its thickness is about 400 m.
Tropical Analyses • See both midlatitude style, isobaric analysis, and streamline/isotach analyses. • Why the latter is most popular?
Why streamline/isotachs better than isobars/heights in the tropics? • Flow not geostrophic within roughly 5 degrees of the equator (so connection between pressure and winds are not necessarily straightforward) • Lot of pibals (just winds) in the tropics compared to radiosondes.
Easterly Waves: The Major Synoptic Disturbances in the Tropics • Westward moving synoptic waves characterize the whole tropics • They are tropospheric waves that modulate clouds/rainfall and move at about 5-10 m/s and have wavelengths of 2000-4000 km.
The Mean State over West Africa” The African Easterly Jet (AEJ) Burpee, R.W. 1972 The origin and structure of easterly waves in the lower troposphere of North Africa, J. Atmos. Sci. 29, 77-90 Why is the AEJ there?
Hint • Strong baroclinic zone 10o-20oN
4.2 The Mean State over West Africa Reed, R.J., Norquist, D.C. and Recker, E.E., The structure and properties of African wave disturbances as observed during Phase III of GATE, Mon. Wea. Rev. 105, 317-333 (1977).
Zonal Variations in the Mean State Mean 700hPa U wind, 16th July – 15th August 2000 Berry and Thorncroft 2005
4.3 Observations of African Easterly Waves Carlson 1969ab Carried out case studies of several AEWs Peak amplitudes at 600-700mb and at surface Eastward tilt with height from the surface to the level of the AEJ Two cyclonic centers at low-levels Synoptic variations in cloud cover Peak of cloudiness close to AEW trough
4.3 Observations of African Easterly Waves Burpee (1970) Eastward tilt beneath the AEJ – Westward tilt above the AEJ Northerlies dry and warm Southerlies wet and cold
4.3 Observations of African Easterly Waves Reed et al, 1977 Composite AEW structures from phase III of GATE (after Reed et al, 1977). (a) and (b) are relative vorticity at the surface and 700hPa respectively with a contour interval of 10-5s-1. (c) and (d) show percentage cover by convective cloud and average precipitation rate (mm day-1) respectively. Category 4 is location of 700hPa trough and the “0” latitude is 11oN over land and 12oN over ocean.
4.3 Observations of African Easterly Waves Thorncroft and Hodges (2001)
4.3 Observations of African Easterly Waves Carlson, T.N., 1969a: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256-276. Carlson, T.N., 1969b: Some remarks on African disturbances and their progress over the tropical Atlantic. Mon. Wea. Rev., 97, 716-726. Burpee, R.W., 1970: The origin and structure of easterly waves in the lower troposphere of North Africa, J. Atmos. Sci. 29, 77-90. Reed, R.J., Norquist, D.C. and Recker, E.E., 1977: The structure and properties of African wave disturbances as observed during Phase III of GATE, Mon. Wea. Rev. 105, 317-333 Thorncroft, C.D. and Hodges: 2001 K.I., African easterly wave variability and its relationship to tropical cyclone activity, J. Clim.14, 1166-1179 (2001). Kiladis, G., C. Thorncroft, and N. Hall, 2006: Three-Dimensional Structure and Dynamics of African easterly waves: part I: Observations, J. Atmos. Sci., 63, 2212-2230. Mekonnen, A., C. Thorncroft, and A. Aiyyer, 2006: On the significance of African easterly waves on convection, J. Climate, 19, 5405-5421. Berry, G., Thorncroft, C.D. and Hewson, T. 2006 African easterly waves in 2004 – Analysis using objective techniques Mon. Wea. Rev., 133, 752-766