1 / 56

Power Amplifier

Power Amplifier. SRSLab Hwang, in-hong Clickhih@hanmail.net. I N D E X. Introduction DC Simulation - IV Curve ( I DS vs V DS , V GS ) Conventional Schematic S-Parameter - Input , Output , Real matching Harmonic Balance - 2Tone_test (IM3) LSSP

katy
Download Presentation

Power Amplifier

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Power Amplifier SRSLab Hwang, in-hong Clickhih@hanmail.net

  2. I N D E X • Introduction • DC Simulation - IV Curve ( IDS vs VDS , VGS ) • Conventional Schematic • S-Parameter - Input , Output , Real matching • Harmonic Balance - 2Tone_test (IM3) • LSSP - η(Efficiency) , PAE ( Power-added Efficiency ) - Gain , P1dB ,Gain flatness

  3. Introduction

  4. Amplifier vi vo power stage driver stage • Input signal vi(t)= vcosω1t + vcosω2t • Output signal vo(t)= a1vi(t) +a2vi2(t) + a3vi3(t) +a4vi4(t) + a5vi5(t)+… • fundamental, IM3 frequency • vfund = { a1v + 9/4a3v3 + 25/4a5v5 } cos(ω1,2t) • vIM3 = { 3/4a3v3 + 25/8a5v5 } cos(2ω1,2 - ω2,1)

  5. Input Network Output Network Z1 Z2 Zo Output Network Input Network Z1 Z2 Zo Matching methods • P79, 123 • Maximum Gain Input Network Output Network Z2 Z1 Zo • Maximum Power(Power Amplifier) • Minimum noise(LNA)

  6. Amplifier Freescale (MRF21045)

  7. Device (MRF 21045R3) • Goal • Class AB • Freq = 2.14 GHz • Gain = 10.2 dB • IMD3 = - 35dBc • Pout(Avg) = 10W (40dBm) • PAE = 26% • η = 28.5%

  8. Substrate information T H Er Er (유전율) = 3.52 H (기판높이) = 0.762mm T (동판두께)= 0.035mm

  9. Bias point Class (A, B, AB)

  10. Class A AC 성분 차단 DC 성분 차단 RL ※ i0(t)=Imaxsinωt v0(t)=Vmaxsinωt ic(t)=iDC - Imaxsinωt vc(t)=VCC + Vmaxsinωt

  11. Class A ID ID Imax Imax VDS VGS Bias Point Input Signal Output Signal ID waveform

  12. Class A Conduction Angle (2π=360o) Vout

  13. Class A • 장점 • 선형 동작 • 출력 신호 왜곡이 낮다 • 단점 • 낮은 효율 • 소자의 수명 단축 • 많은 전류가 요구 • 냉각을 위한 방열 시스템 필요 • 응용 • 높은 주파수, 광대역 동작이 필요 • 높은 선형성, 높은 이득, 낮은 출력

  14. Class B vc1(t)= VCC + n1/n2 (Vmaxsinωt) = VCC + n21/n22 (Imax RL sinωt ) ※ i0(t)= n1/n2 (Imax sinωt ) v0(t)= i0(t)RL= n1/n2 (Imax RL sinωt ) =Vmax sinωt vc .max(t)= n1/n2 (Vmax) = n21/n22 (Imax RL)

  15. Class B ID ID Imax Imax VGS VDS Bias Point Input Signal Clapping Signal Output Signal ID waveform

  16. Class B Conduction Angle (π=180o) Vout

  17. Class B • 장점 • 높은 효율 • 단점 • 낮은 선형성 • 냉각을 위한 방열 시스템 필요 • 응용 • 높은 효율

  18. Class AB ID ID Imax Imax VDS VGS Bias Point Input Signal Clapping Signal Output Signal ID waveform

  19. Class AB Conduction Angle (π~2π =180o ~ 360o) Vout

  20. Conjugate Matching (Max. Gain)

  21. DC-Simulation

  22. IDS vs VDS

  23. Bias – point (Class AB) Fixed drain voltage

  24. IDS vs VGS Class B (Ids=0) Class C

  25. V_DC MOT_LDMOS INCLUDE SRC1 Vdc=3.82 V MOT_TECH_INCLUDE V_DC MTI DC_Feed SRC2 DC_Feed1 DC_Feed Vdc=27 V S-PARAMETERS DC_Feed2 S_Param SP1 Start=1.0 GHz Stop=2.5 GHz Step=20 MHz DC_Block DC_Block2 Term Term Term1 DC_Block Term2 Num=1 DC_Block1 Num=2 MRF_ROOT_MODEL Z=50 Ohm Z=50 Ohm MRF1 MODEL=MRF21045R3 Conventional Schematic RFC DC Block

  26. Smith chart Flat table S11 =-8dB S22 = -1dB S21 = 6.83dB

  27. 50Ω Micro strip

  28. Line calc.이용 기 판 정 보

  29. RFC (VDS) Micro strip Z0 , β Zin ZL = 0 Zin = , jZotanβl at ZL =0 ∵ β = 2π / λ , l = λ/4 , tan90o = ∞

  30. Smith chart

  31. RFC (VGS) Micro strip Z0 , β Zin ZL = 0 Zin = , jZotanβl at ZL =0 ∵ β = 2π / λ , l = λ/4 , tan90o = ∞

  32. Smith chart

  33. Input – matching (S11) Bypass C Ideal components

  34. Smith chart

  35. Output – matching (S22)

  36. Smith chart

  37. Conjugate-matching

  38. Smith chart Flat table Max. Gain =13.56 dB

  39. Power Matching (Max. Power)

  40. Power Amp Design 2.14 GHz WCDMA Amplifier • Gain > 10 dB • 1-dB-compression > 45 dBm • Psat > 47 dBm Main challenge: designing for maximum power output During brainstorm process, decided: • two stages needed to get desired gain • stage one: • silicon transistor • passive bias • stage two: • power FET • active bias power stage driver stage

  41. S 22 Designing the Output Stage for Maximum Output Power • output impedance varies as function of output power • ideal impedance exists for maximum output power • two technique provides information for output-stage matching • load-pull technique Low power High power

  42. Pmax -1dB -2dB -3dB DUT Load-Pull Technique • vary magnitude and phase of load presented to circuit • power output is measured at each impedance point • can use behavioral model (based on measurements) Output impedance and power measurement system Input impedance and power measurement system X X X X Input Tuner Output Tuner Constant output power contours versus output load impedance (input power constant) Can be very expensive and time-intensive

  43. Load-Pull Simulation - 6 dB contour - 5 dB contour - 4 dB contour - 3 dB contour - 2 dB contour Max. Power ( R + j X ) - 1 dB contour our designed impedance

  44. P 2dB P1dB (1dB compression point) Saturated output power Output Power (dBm) Compression region Linear region (slope = small-signal gain) Input Power (dBm)

  45. Stability Stability Circles

  46. Gain(LSSP) Signal generator

  47. Gain(LSSP) Gain = (Pout-Pin) = 10.2dB Pin = 30dBm , Pout = 40.2dBm

  48. P1dB (1dB compression point)

  49. Gain flatness

  50. Gain flatness 허용오차 B/W = 80MHz 12 10 Gain (dB) 8 6 4 2100 2120 2140 2160 2180 2200 2220 Frequency ( MHz) 2100MHz ~ 2180MHz => Constant Gain

More Related