1 / 20

Household Energy Demand in Austria: Impact of Technological & Socio-Demographic Changes

This session explores the observations and hypotheses on Austrian household energy demand, focusing on the impact of technological progress and lifestyle changes. The study delves into the key factors driving energy demand and suggests policy implications for enhancing energy efficiency. The session presents a model that links efficiency improvement, technology, and service demand, emphasizing the role of socio-demographic factors in shaping energy consumption patterns.

kaula
Download Presentation

Household Energy Demand in Austria: Impact of Technological & Socio-Demographic Changes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. International Energy Workshop, Venice, 18 June 2009 Session: Sustainable Development 2, SalaConsiglio The Impact of Technological andSocio-Demographic Change on theEnergy Demand ofHouseholds in AustriaKurt Kratena, Ina Meyer, Michael WügerAustrian Institute of Economic Research – WIFO

  2. Household energy demand Observations & hypothesis Consumers’ energy demand rises despite technological progress in the past (efficiency improvement) Demand is driven by energy ‘service’ demand  socio-demographic structure of households also plays an important role (not only income & prices) Policies for the non ETS sector (households) focus on efficiency improvement  how to implement ?  A model of household energy demand that consistently links efficiency/technology and ‘service’ demand

  3. Demand system for energy ‚services‘ Expenditure function for non-durables with utility (u) and prices (pi) + Expenditure for durablesI with price (pI) Main features: Appliance stocks  energy efficiency Dealing with “service prices” and demand Price elasticity of services  ‘rebound’ effect!

  4. Demand system for energy ‚services‘ Converting energy flow (E) into service (S): Impact of the efficiency parameter (hES) on the ‘real price of service’ Budget shares = service shares

  5. AIDS model for household consumption Deaton, Muellbauer, AER, 1980 Shephard’s Lemma & indirect utility function budget share (with socio-demographic variables Z) Time series model: Cross section model: u (construction year of building), s (average size of dwelling), k (population density)

  6. AIDS model for household consumption Elasticities 1. Income elasticities (direct derivation) 2. Price elasticities General: hij,COMP = hij,UNCOMP + hiwj (Slutsky equation) hij,COMP …compensated price elasticity hij,UNCOMP …uncompensated price elasticity. Uncompensated price elasticity where dij is the Kronecker delta and dij = 1 for i = j and dij= 0 for i ≠ j.

  7. Linking time series & cross section No panel data available (only 1 cross section) Combining advantages (in terms of variance for econometric estimation) of both data sets: Time series: high variance in prices, low variance in income and socio-demographics Cross section: high variance in income and socio-demographics, low (no) variance in prices Income elasticity of cross section is ‘right’ and price elasticity of time series is ‘right’ Income parameter b of the linked model: Price paramter g of the linked model:

  8. Linking time series & cross section The linked model Converting dummy variables in cross section (for socio-demography) into time series variables: aggregate household structure wdi are shares of households with certain characteristics in total hoseholds, the si are derived from cross section parameters  the sum over wdi is 1 and these variables only have an impact, if the household structure changes.

  9. Data sources, 1990 - 2006 National Accounts for Austria (private consumption): Service of transport (input of fuels), service of heating (input of solids,oil, gas..), service of electricity using appliances, food/beverages, clothing/footwear, other commodities. ODYSSE database for Austria (efficiency of appliances): Refrigerators, freezers, washing machines, dish washers, TVs, dryers, heating, water heating and cooking Statistics Austria: private car fleet by engine power, own calculation of average car fleet consumption for 60% of stock (ECE consumption & “Sprit-Monitor”) Statistics Austria: Household Survey 2004/05, 3,500 households with socio-demographic characteristics

  10. Energy and Service Prices, 1990 - 2006 Source: Kratena, Meyer, Wüger WIFO WP No. 334, Feb 2009

  11. Descriptive Statistics of Variables, 1990 - 2006 Source: Kratena, Meyer, Wüger WIFO WP No. 334, Feb 2009

  12. Shares of households by living space of dwelling Source: Kratena, Meyer, Wüger WIFO WP No. 334, Feb 2009

  13. Shares of households by construction year of dwelling Source: Kratena, Meyer, Wüger WIFO WP No. 334, Feb 2009

  14. Shares of households by population density - indicator of sprawl Source: Kratena, Meyer, Wüger WIFO WP No. 334, Feb 2009

  15. Inputs for the linked model Source: Kratena, Meyer, Wüger WIFO WP No. 334, Feb 2009

  16. Uncompensated and compensated price elasticities Source: Kratena, Meyer, Wüger WIFO WP No. 334, Feb 2009

  17. Change in energy demand in 2006 with constant socio-demography and technology of 1990

  18. Change in energy demand in 2006 with constant socio-demography of 1990

  19. Change in energy demand in 2006 with constant technology of 1990

  20. Conclusions ex post simulation (1990-2006) shows that technological and lifestyle changes have a significant influence on energy demand of households Lifestyle change has increased energy demand, especially for electricity, whereas technological change has dampened growth in energy demand, especially for motor vehicle fuels In the case of gasoline/diesel and heating the impact of technological change on energy demand was large enough to compensate for the demand drivers with respect to lifestyles of households. As demand in these two categories has increased, this must be assigned to the development of income and prices or other socio-demographic variables not captured in our analysis. In the case of electricity, socio-demographic variables taken into account here had an energy increasing impact on demand that could not be compensated for by the increase in efficiency of appliances.

More Related