1 / 26

[0 1 0]

Z. [0 1 0]. [1 0 1]. Y. X. - 2 / 3 11. z. [111]. [001]. c. y. [120]. b. 1½0. [210]. x. a. [100]. For cubic: a = b = c = a o. Miller Indices. Miller Indices. Z. Z. Z. Y. Y. Y. X. X. X. (100). (110). (111). FAMÍLIA DE PLANOS {110} É paralelo à um eixo.

kaycee
Download Presentation

[0 1 0]

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Z [0 1 0] [1 0 1] Y X

  2. -2/311 z [111] [001] c y [120] b 1½0 [210] x a [100] For cubic: a = b = c = ao

  3. Miller Indices

  4. Miller Indices

  5. Z Z Z Y Y Y X X X (100) (110) (111)

  6. FAMÍLIA DE PLANOS {110}É paralelo à um eixo

  7. FAMÍLIA DE PLANOS {111}Intercepta os 3 eixos

  8. Directions & Miller Indices in Hexagonal Structures [011] (0001) [210] [UVW] or [uvtw] (hkil) or (hk·l)

  9. Diamond Lattice (100) (110)

  10. Diamond Lattice (111)

  11. Spacing of Planes Cubic: Cubic: Tetragonal: Tetragonal: Hexagonal: Rhombohedral:

  12. Spacing of Planes Orthorhombic: Monoclinic: Triclinic:

  13. Reciprocal Lattice Unit cell: b1, b2, b3 Reciprocal lattice unit cell: b1*, b2*, b3* defined by: b3* B P C b3 b2 A O b1

  14. Reciprocal Lattice Like the real-space lattice, the reciprocal space lattice also has a translation vector, Kl: Where the length of R·K is equal to: The magnitude of the translation vector has the following relationship:

  15. Angles and Inner Planar Spacing is  to (hkl) plane. Therefore, the angle between (h1k1l1) and (h2k2l2) planes is the angle between the Kh1k1l1 and Kh2k2l2 vectors. Recall the dot product: Angles between reciprocal lattice vectors.

  16. Two Dimensional Lattice Wigner-Seitz Possible choices of primitive cell for a single 2D Bravais lattice.

  17. First Brillouin Zone If these lattice points now represent reciprocal lattice points, then the first Brillouin zone is just the Wigner-Seitz cell of the reciprocal lattice. b2* b1*

  18. DETERMINAÇÃO DA ESTRUTURA CRISTALINA POR DIFRAÇÃO DE RAIO X

  19. DIFRAÇÃO DE RAIOS XLEI DE BRAGG n= 2 dhkl.sen • É comprimento de onda N é um número inteiro de ondas d é a distância interplanar  O ângulo de incidência Válido para sistema cúbico dhkl= a (h2+k2+l2)1/2

  20. DISTÂNCIA INTERPLANAR (dhkl) • É uma função dos índices de Miller e do parâmetro de rede dhkl= a (h2+k2+l2)1/2

  21. TÉCNICAS DE DIFRAÇÃO • Técnica do pó: É bastante comum, o material a ser analisado encontra-se na forma de pó (partículas finas orientadas ao acaso) que são expostas à radiação x monocromática. O grande número de partículas com orientação diferente assegura que a lei de Bragg seja satisfeita para alguns planos cristalográficos

  22. O DIFRATOMÊTRO DE RAIOS X • T= fonte de raio X • S= amostra • C= detector • O= eixo no qual a amostra e o detector giram Amostra Fonte Detector

  23. DIFRATOGRAMA

More Related