1 / 9

Collimator Test-Bench Heating Test

Primary Goals To measure the thermal impedance between graphite and the cooling plate as a function of the applied pressure To verify the temperature distribution in the collimator jaw baseline design (graphite, copper cooling plate, s.steel support structure) and compare to simulations

keely
Download Presentation

Collimator Test-Bench Heating Test

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Primary Goals To measure the thermal impedance between graphite and the cooling plate as a function of the applied pressure To verify the temperature distribution in the collimator jaw baseline design (graphite, copper cooling plate, s.steel support structure) and compare to simulations To identify whether graphite dust is produced after several bakeout cycles at 250 ºC Secondary Goal To measure outgassing of graphite in the real configuration Collimator Test-Bench Heating Test A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  2. Experimental set-up A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  3. Experimental set-up Heating resistance AC150 C-C composite Cooling channels Springs A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  4. 2 x 5 lt/min, 6 Kg/m2 spring load Measured temperature increase 84±1 ºC 200±0.4 ºC 10.1±0.3 ºC 30.4±0.4 ºC ~13 ºC ~51 ºC 6.7±0.3 ºC 21.4±0.3 ºC 5.3±0.3 ºC 16.9±0.3 ºC 2.9±0.3 ºC 9.7±0.3 ºC 4000 W 1500 W A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  5. Estimation of thermal impedance Global thermal impedance Cu/AC150 C-C ~ 8800 W m-2K-1 A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  6. Estimation of thermal impedance A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  7. Temperature distribution Comparison experiment - model Model * Experiment 31.1º 30.8º 24.9º 24.0º 21.9º 21.3º 17.8º 17.4º Absolute temperatures with water inlet at 11 ºC, 2x5 lt/min, 2500W * E. Marotta, S. Mazzuca, J. Norley, Electronics Cooling August 2002 A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  8. 2000 W , 6 Kg/m2 spring load Change of water flow 104±2 ºC 109±2 ºC 15.3±1.1 ºC 19.6±1.1 ºC ~20 ºC ~26 ºC 10.6±1.1 ºC 14.8±1.1 ºC 8.3±1.1 ºC 12.6±1.1 ºC 4.7±1.1 ºC 9±1.1 ºC 2 x 5 lt/min, Twater=2.6±0.4 ºC 2 x 3 lt/min, Twater=5.6±0.4 ºC A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

  9. Switch-on 0 -> 2500 W A. Bertarelli - S. Calatroni - M. Mayer - R. Perret TS/MME

More Related