210 likes | 381 Views
A wide-range model for simulation of pump-probe experiments with metals. M. Povarnitsyn , K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS , Moscow , Russia povar@ihed.ras.ru T. Itina Laboratoire Hubert Curien, CNRS, St-Etienne, France. EMRS-2011
E N D
A wide-range model for simulation of pump-probe experiments with metals M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia povar@ihed.ras.ru T. Itina Laboratoire Hubert Curien, CNRS, St-Etienne, France EMRS-2011 Laser materials processing for micro and nano applications Nice, France 12 May, 2011
Outline • Motivation • Model • — Governing equations • — Equation-of-state • — Transport properties • Pump-probe technique • Simulation results • Conclusions
Motivation Reflectivity R Phase shiftψ
Two-temperature semi-empirical EOS bn sp unstable
Frequency of collisions Eidmann et al. PRE 62 (2000) Pump-probe for cold Elsayed et al. PRL 58, 1212 (1987) Groeneveld et al. PRL 64, 784 (1990) Schoenlein et al. PRL 58, 1680 (1987)
Permittivity of Al, Ti = Troom E. D. Palik, Handbook of optical constants of solids, 1985.
Transfer-matrix method (optics) Born, M.; Wolf, E., Oxford, Pergamon Press, 1964.
probe Pump-probe technique pump CCD delay target Widmann et al.PHYSICS OF PLASMAS8 (2001)
Conclusions • Pump-probe experiments provide an integral test of the models in the theoretically difficult regime of warm dense matter • The target material motion is evident for heating by femtosecond pulses of intensity > 1014 W/cm2. • Phase shift of S and P-polarized pulses is different because of separated zones of absorption • Uncertainty in the pulse energy determination of ~ 10% gives substantial deflection of the theoretical curves