1 / 26

Profesor: Víctor Manuel Reyes F. Asignatura: Matemática para Ciencias de la Salud (MAT-011)

Profesor: Víctor Manuel Reyes F. Asignatura: Matemática para Ciencias de la Salud (MAT-011) Primer Semestre 2012. Razón. La palabra razón entonces es sinónimo de división . ¿Porqué, entonces, usar razón en vez de división?. Realicemos la siguiente división.

kelii
Download Presentation

Profesor: Víctor Manuel Reyes F. Asignatura: Matemática para Ciencias de la Salud (MAT-011)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Profesor: Víctor Manuel Reyes F. • Asignatura: Matemática para Ciencias de la Salud (MAT-011) • Primer Semestre 2012

  2. Razón La palabra razón entonces es sinónimo de división. ¿Porqué, entonces, usar razón en vez de división? Realicemos la siguiente división Pues bien, entonces la razón entre 2 y 3 es 0,66666. ¿Y la razón entre 4 y 6?

  3. Razón “Normalmente” en ecografías se estima la longitud del bebe según el tamaño del fémur. Por cada 2 centímetros que mide el hueso el bebe en gestación mide 14. De este modo la razón entre el fémur y el tamaño es de 1/7

  4. Razón Ahora deberías predecir el tamaño del bebe si la longitud del fémur es de 1,65 cms. • Por lo tanto la razón nos está indicando una forma de estimación un cierto “patrón” de cómo será el tamaño del bebe teniendo en cuenta la imposibilidad de medir la longitud real. Entendiendo ahora la razón entre la cantidad a y la cantidad b como una medida de relación entre ay b, se tiene una poderosa herramienta de medición con muchas aplicaciones al entorno real

  5. Razón Los demógrafos, que son los que estudian la evolución de las poblaciones establecen que la razón de natalidad anual es de Queriendo decir con esto de que por cada 1000 habitantes nacen al año 17 bebés. Entonces ¿por cada 2000 habitantes cuantos nacimientos ocurrirán durante el año?

  6. Razón La razón entre población y superficie se conoce, por los demógrafos, como densidad poblacional. Ejemplo población de la Comuna de Osorno es 145475 personas, la superficie de la Comuna es de 951,3 kilómetros cuadrados. Por lo tanto, la razón entre población y superficie es la densidad poblacional y su valor: habitantes por kilómetro cuadrado ¡Cada un kilómetro cuadrado viven aproximadamente 153 personas! ComunaChaitén; superficie: 8.470,5 Km2 7.182 personas

  7. Razón

  8. Razón Phi, o la “razón divina para los estándares de belleza " Largo = 1,618 Ancho http://www.neoteo.com/numero-aureo-belleza-matematica

  9. Proporción Observa dos tablas de valores. Podrías determinar (solo con la información de las tablas) cuánto costarán 10 paquetes de pañales?. ¿Y el peso del bebe a los 10 meses?.

  10. Proporción Directa: Dos magnitudes son directamente proporcionales si al duplicarse una de ellas la otra también lo hace, si se triplica una la otra también lo hace, si una se divide a la mitad la otra hará lo mismo. En definitiva: serán directamente proporcionales si se verifica que multiplicándose por un factor constante k, una de las magnitudes, la otra magnitud se multiplicará por el mismo factor. Considera la siguiente situación:

  11. Proporción Directa: ¿Son proporcionales?

  12. Proporción Directa:

  13. Proporción Directa: ¿Qué cantidad de mg de P.A. son necesarios para obtener 436 comprimidos?

  14. Proporción Directa: Ejemplo: Resolver el siguiente problema utilizando el concepto de proporcionalidad directa: Se ha obtenido experimentalmente el siguiente resultado: 750 gotas equivalen a 48,434 ml. ¿A cuántos ml equivale 5 gotas?

  15. Proporción Inversa: Dos magnitudes son inversamente proporcionales si al duplicarse una la otra se reduce a la mitad; al triplicarse una la otra se reduce a la tercera parte; si una se reduce a la décima parte la otra se multiplica por diez, etc.

  16. Proporción Inversa: - Para que dure 12 horas ¿cuál es la velocidad? - Aplicar 2 litros de suero a paciente con un flujo de 223 ml x hr-1? ¿Cuanto demorará?

  17. Proporción Inversa: A pesar de la eficiencia de la nariz como acondicionadora del aire inspirado, a al incorporar la respiración bucal, se pierde parte importante de esta habilidad, ¿A qué flujo de aire la capacidad se reduce a la mitad de la capacidad total? http://kinecem.wordpress.com/kinesiologia-pediatrica/

  18. Porcentaje Consideremos la siguiente situación: El medicamento A tiene 163 mg de principio activo y 162 mg de excipientes; mientras que el medicamento B tiene 160 mg, del mismo principio activo, y 155 mg de excipientes. ¿Cuál de los dos medicamentos tiene mayor concentración de principio activo? Medicamento A: el principio activo representa 163/325 del total del medicamento. Es decir: por cada 325 partes de medicamento, 163 de ellas corresponderán al principio activo. Medicamento B: el principio activo representa 160/315 del total del medicamento. Es decir: por cada 315 partes de medicamento, 160 de ellas corresponderán al principio activo.

  19. Porcentaje El porcentaje (o tanto por ciento) de principio activo que contendrá será la cantidad de principio activo que se registre por cada 100 partes de medicamento. El medicamento A contiene un 50,153% (aprox.) de principio activo El medicamento B contiene un 50,793% (aprox.) de principio activo El tanto por ciento de cierta cantidad es equivalente a las tantas cien avas partes de esa cantidad.

  20. Ejemplo de cálculo de porcentaje La indicación de un medicamento establece que la dosis para un adulto es de 20 ml, indica a su vez que para un niño debe reducirse en un 20%. Determinar que cantidad de ml compone la dosis para un niño. Pues el problema se reduce a determinar el 80% de 20 ml, que de acuerdo con lo establecido es equivalente a calcular las ochenta cien avas partes de 20 ml...

  21. Ejemplo de cálculo de porcentaje De acuerdo al relevamiento realizado por el departamento de estadísticas de cierto hospital, el 23% de los pacientes que se atienden por día, concurren a la visita médica por primera vez. Sabiendo que en el día de hoy los pacientes que concurren al médico por primera vez son 3, en función de la estimación realizada, determinar la cantidad de pacientes que se espera serán atendidos.

  22. Ejemplo de cálculo de porcentaje Se sabe que un paciente ha experimentado dos incrementos consecutivos de presión arterial (alta), ambos del 5%. El registro actual es de 132,3 mm Hg; determinar el valor de presión arterial (alta) anterior a los incrementos.

  23. Ejemplo de cálculo de porcentaje El 75% de quienes cursan la asignatura de Matemática para Ciencias de la Salud (MAT-011) disfrutan mucho las clases de matemática. Sabiendo que 34 estudiantes han declarado no hacerlo determina la cantidad total de matriculados.

  24. Ejemplo de cálculo de porcentaje • Un esforzado estudiante de MAT011 ha obtenido las siguientes calificaciones el semestre pasado: • 1° Solemne: 4,3 • 2° Solemne: 2,7 • 3° Solemne: 1,7 • Recuperativa: 4,3 • Examen: 4,1 • Si la ponderación es de 60% las notas de presentación y un 40% el examen y considerando las disposiciones reglamentarias de evaluación de CCBB de la Universidad el esforzado estudiante ¿Aprobó el curso?

  25. Ejemplo de cálculo de porcentaje Problemas de mezcla: Consideremos la siguiente situación: Se tienen dos compuestos: el compuesto A y el compuesto B. El compuesto A contiene un 30% de principio activo, mientras que el compuesto B solo un 12% del mismo principio activo. Se desea obtener una mezcla de 3 litros, la cual debe tener un 20% de principio activo. ¿Qué cantidad de cada uno de los compuesto se deben utilizar?

More Related