1 / 12

Balancing Redox Reactions

Balancing Redox Reactions. MnO 4 -  Mn 2+. manganese is balanced. balance oxygen using H 2 O. MnO 4 -  Mn 2+ +. 4 H 2 O. balance hydrogen using H +. MnO 4 - +  Mn 2+ + 4 H 2 O. 8H +. balance charge using e -. MnO 4 - + 8H +  Mn 2+ + 4 H 2 O. + 5e -.

kelly-rojas
Download Presentation

Balancing Redox Reactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Balancing Redox Reactions MnO4- Mn2+ manganese is balanced balance oxygen using H2O MnO4- Mn2+ + 4H2O balance hydrogen using H+ MnO4- +  Mn2+ + 4 H2O 8H+ balance charge using e- MnO4- + 8H+ Mn2+ + 4 H2O +5e-

  2. Oxidation States MnO4- + 8H+ Mn2+ + 4 H2O +5e- Oxidation state of oxygen = 2- in compounds 0 in O2 Oxidation state of hydrogen = 1+ in compounds 0 in H2 Mn = 7+ MnO4- 4 x (-2) + 1(Mn) = -1 Mn2+ Mn = 2+ Mn7+ + 5 e- Mn2+

  3. 6 MnO4- + 8H+ Mn2+ + 4 H2O +5e- o = 1.51 V 2H+ + 2e- H2 o = 0.00 V anode cathode Pt(s) Mn2+(aq)(1M) MnO4-(aq)(1M), ,H+(1M) Pt(s) H2(g)(1atm) H+(aq)(1M)  ( )5 H22H++2e- ( )2 MnO4-+8H++5e-Mn2++4 H2O oxidation reaction reduction reaction 2MnO4- + 16H+ +10e- + 5H2 2Mn2+ + 8 H2O + 10H+ + 10e- 2MnO4- + 6H+ + 5H2 2Mn2+ + 8 H2O

  4. 2H+ + 2e- H2 o = 0.00 V o = 1.51 V MnO4- + 8H+ Mn2+ + 4 H2O +5e- 2MnO4- + 6H+ + 5H2 2Mn2+ + 8 H2O ocell= ored - oox = 1.51 - 0 = 1.51 V Go = -nFo = -1457 kJ = - (10)(96,500)(1.51) Go= -RT ln K = -1457 kJ K = e588 -RT -RT

  5. Nernst Equation G = Go + RT ln Q G = -nFcell Go = -nFocell standard non-standard nF ocell - RT ln Q cell =

  6. Nernst Equation cell = ocell - RT ln Q nF anode cathode Cu(s) Cu2+(aq) (1M ) 4M Ag+(aq) (1M) Ag(s) a) oxidation oxidation b) reduction Cu2+ + 2e- Cu Cu(s) Cu2+ + 2e- 2( ) Ag+ + e- Ag(s) o= 0.34 V o= 0.80 V ored - oox= ocell= - 0.34 = 0.80 0.46 V

  7. [products]minitial [reactants]ninitial Nernst Equation cell = ocell - RT ln Q nF anode cathode Cu(s)Cu2+(aq) (4M) Ag+(aq) (1M) Ag(s) Cu (s)  Cu2+ + 2e- 2Ag+ + 2e- 2Ag (s) Q = = [Cu2+] = 4 = 4 [Ag+] 12 2

  8. Nernst Equation cell = ocell - RT ln Q nF anode cathode Cu(s)Cu2+(aq) (4M) Ag+(aq) (1M) Ag(s) Cu(s)  Cu2+ + 2e- 2Ag+ + 2e- 2Ag (8.314) ln 4 = 0.44 V cell = 0.46V - 2 (298) (96,500)

  9. Non-standard conditions Cu(s)Cu2+(aq) (4M) Ag+(aq) (1M) Ag(s) Cu(s)  Cu2+ + 2e- 2Ag+ + 2e- 2Ag G = -nF (0.46V) Go = -(2 mol e-) (96,500 C/mol e-) = -89 kJ (0.44V) G= -(2 mol e-) (96,500 C/mol e-) = -85 kJ

  10. Concentration cell Cu(s) Cu2+(aq) (0.5M)  Cu2+(aq) (2M) Cu(s)  Cu2+ + 2e- + 2e-  Cu(s) Cu(s) Cu2+ oxidation reduction 0 V ln Q cell = ocell - RT nF ocell= ored-oox = 0.34 - 0.34 = 0

  11. Concentration Cells Cu(s)Cu2+(aq) (0.5M)Cu2+(aq) (2M) Cu(s) Cu(s)  Cu2+ + 2e- Cu2+ + 2e- Cu(s) oxidation reduction = [products]minitial Q = [Cu2+] = 0.5 = 0.25 anode cathode [reactants]ninitial [Cu2+] 2 cathode -RT 2F cell = ocell -RT ln Q = 0 ln .25 = .02 V nF

  12. + - + Concentration Cells h QA P680 Mn + O2 2H2O 4H+ + 4e- pH = 3.0 cell = ocell - RT ln Q nF pH = 7.0 cell = ocell - 0.059 log Q n cell= Q = 10-7 / 10-3 G < 0 0.24 V G > 0 ADP + Pi ATP

More Related