1 / 36

Spectroscopic Analysis of Molybdenum Model Compounds by: Infrared 1 H NMR Electronic (UV/vis)

Spectroscopic Analysis of Molybdenum Model Compounds by: Infrared 1 H NMR Electronic (UV/vis) ESI-MS Why? What did I make? How do molecules differ?. UV/vis Spectroscopy = Electronic Spectroscopy What does it monitor / probe? What information about molecule can one obtain?.

kenaz
Download Presentation

Spectroscopic Analysis of Molybdenum Model Compounds by: Infrared 1 H NMR Electronic (UV/vis)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spectroscopic Analysis of Molybdenum Model Compounds • by: • Infrared • 1H NMR • Electronic (UV/vis) • ESI-MS • Why? • What did I make? • How do molecules differ?

  2. UV/vis Spectroscopy = Electronic Spectroscopy What does it monitor / probe? What information about molecule can one obtain? What if l 350 nm has e = 8,000 M-1cm-1 and l 550 nm has e = 80 M-1cm-1 ?

  3. IR Spectroscopy What does it tell us? What more information about molecule can one obtain? O O O O O Mo Mo Mo Mo

  4. 1H NMR: what do you expect to see?

  5. a a b b c c Expected: 3 resonances, 2 -CH3 (a & c with 6H) and 1 H (b) ( B-H not visible due to broadening) … plus H’s on cation TEA = [N(CH2CH3)4]+

  6. 1H NMR: what do you expect to see? [Tp*Mo(S)(S4)]—

  7. b a c a b c d f e a c f d b e Mo=S Mo=O TEA+ -CH3 TEA+ -CH2-

  8. d e Mo=S Mo=O f a b c a TEA+ -CH3 b c TEA+ -CH2- a c b d e f

  9. R1 ≠ R2: How many H’s expected in NMR from pyrazole rings? All -methyl and ring H’s will be unique: see 6 -Me and 3 ring H

  10. How many H’s expected in NMR from detc liagnds?

  11. Mass Spectometry Facility Dr. Arpad Somogyi

  12. Electrospray Ionization Mass Spectrometry ESI-MS black box Molecules in gas phase as ions + or - magnetic field separates light and heavy mass ions mass detector

  13. Electron impact ionization

  14. Electrospray ionization method Electric potential creates + and - ions makes tiny droplets Vacuum removes solvent

  15. All Mo molecules are identified by a characteristic series of lines: Mo isotopes: 92Mo, 94Mo, 95Mo, 96Mo, 97Mo, 98Mo,

  16. YELLOW (calculated mass spectrum) Mass Relative abundance 474.000 6.12 476.000 8.84 477.000 7.34 478.000 11.91 479.000 10.57 480.000 17.08 482.000 14.14 481.000 7.06 484.000 6.00 483.000 3.06 486.000 1.29 485.000 0.94 488.000 0.14 475.000 0.88 487.000 0.18 489.000 0.02 490.000 0.01

  17. RED (calculated mass spectrum) Mass Relative abundance 404.000 11.48 406.000 8.72 407.000 12.64 408.000 15.04 409.000 10.98 410.000 20.73 412.000 10.58 411.000 4.24 414.000 1.58 405.000 1.66 413.000 1.55 415.000 0.21 416.000 0.10 417.000 0.01 418.000 0.00

  18. BLUE (calculated mass spectrum) Mass Relative abundance 468.000 10.36 470.000 8.81 471.000 11.67 472.000 14.47 473.000 11.15 474.000 20.10 476.000 11.30 475.000 5.04 478.000 2.33 469.000 1.66 477.000 1.93 479.000 0.35 480.000 0.24 481.000 0.03 482.000 0.01 483.000 0.00

  19. PURPLE (calculated mass spectrum) Mass Relative abundance 824.000 1.32 826.000 2.03 827.000 3.18 828.000 4.63 829.000 5.22 830.000 9.33 832.000 11.22 831.000 7.37 834.000 10.77 833.000 9.98 835.000 8.87 836.000 9.11 837.000 5.00 838.000 5.46 840.000 1.99 839.000 1.99 842.000 0.43 841.000 0.58 844.000 0.06

  20. Y R P More lines, more Mo atoms B All have one Mo atom

  21. RED mass spectrum 409.6

  22. YELLOW mass spectrum 444.6

  23. BLUEfull mass spectrum

  24. YELLOW (high mass species)

  25. Accurate mass : 540.019287 for Modetc3 Mass Relative abundance 536.000 9.82 538.000 8.43 539.000 11.53 540.000 14.33 541.000 11.33 542.000 19.63 544.000 10.96 537.000 2.13 543.000 5.83 545.000 2.42 546.000 2.30 547.000 0.45 548.000 0.25 549.000 0.04 550.000 0.02 551.000 0.00 Accurate mass : 556.014160 for MoOdetc3 Mass Relative abundance 552.000 9.80 554.000 8.44 555.000 11.51 556.000 14.32 557.000 11.33 558.000 19.62 560.000 10.98 559.000 5.85 562.000 2.32 553.000 2.12 561.000 2.43 563.000 0.46 564.000 0.25 565.000 0.04 566.000 0.02 567.000 0.00

  26. MoOdetc2: Mo1S4O1N2C10H20 mass: 408.48 g/mol MoOdetc2. NCCH3: Mo1S4O1N3C12H23 mass: 449.53 g/mol MoOCl2detc2: MoCl2S4O1N2C10H20 mass: 479.38 g/mol Mo2O3detc4: Mo2S8O3N4C20H40 mass: 832.96 g/mol MoOS2detc2: MoS6ON2C10H20 mass: 472.61 g/mol

  27. MoOCl2detc2: MoCl2S4O1N2C10H20 Accurate mass : 478.893738 Mass Relative abundance 474.000 6.12 476.000 8.84 477.000 7.34 478.000 11.91 479.000 10.57 480.000 17.08 482.000 14.14 481.000 7.06 484.000 6.00 483.000 3.06 486.000 1.29 485.000 0.94 488.000 0.14 475.000 0.88 487.000 0.18 489.000 0.02 490.000 0.01

  28. MoOdetc2: Mo1S4O1N2C10H20 Accurate mass : 407.987732 Mass Relative abundance 404.000 11.48 406.000 8.72 407.000 12.64 408.000 15.04 409.000 10.98 410.000 20.73 412.000 10.58 411.000 4.24 414.000 1.58 405.000 1.66 413.000 1.55 415.000 0.21 416.000 0.10 417.000 0.01 418.000 0.00

  29. Mo2O3detc4: Mo2S8O3N4C20H40 Accurate mass : 831.970276 Mass Relative abundance 824.000 1.32 826.000 2.03 827.000 3.18 828.000 4.63 829.000 5.22 830.000 9.33 832.000 11.22 831.000 7.37 834.000 10.77 833.000 9.98 835.000 8.87 836.000 9.11 837.000 5.00 838.000 5.46 840.000 1.99 839.000 1.99 842.000 0.43 841.000 0.58 844.000 0.06

  30. MoOS2detc2: MoS6ON2C10H20 Accurate mass : 471.931763 Mass Relative abundance 468.000 10.36 470.000 8.81 471.000 11.67 472.000 14.47 473.000 11.15 474.000 20.10 476.000 11.30 475.000 5.04 478.000 2.33 469.000 1.66 477.000 1.93 479.000 0.35 480.000 0.24 481.000 0.03 482.000 0.01 483.000 0.00

More Related