1 / 40

Spline Methods in CAGD

Spline Methods in CAGD. Lee Byung-Gook Dongseo Univ. http://kowon.dongseo.ac.kr/~lbg/. Affine combination. Linear combinations Affine(Barycentric) combinations Convex combinations Barycentric coordinates. Affine combination. Euclidean coordinate system. Coordinate-free system.

Download Presentation

Spline Methods in CAGD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spline Methods in CAGD Lee Byung-Gook Dongseo Univ. http://kowon.dongseo.ac.kr/~lbg/ KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  2. Affine combination • Linear combinations • Affine(Barycentric) combinations • Convex combinations • Barycentric coordinates KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  3. Affine combination Euclidean coordinate system Coordinate-free system KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  4. Polynomial interpolation KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  5. Polynomial interpolation • Lagrange polynomials KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  6. Examples of cubic interpolation KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  7. Bezier KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  8. Representation Bezier KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  9. Properties of Bezier • Affine invariance • Convex hull property • Endpoint interpolation • Symmetry • Linear precision • Pseudo-local control • Variation Diminishing Property KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  10. Linear splines KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  11. Quadratic splines KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  12. Quadratic splines KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  13. Representation splines KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  14. B-spline • Recurrence Relation • Bernstein polynomial KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  15. B-spline KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  16. B-spline • Smoothness=Degree-Multiplicity KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  17. Spline space KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  18. Univariate spline KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  19. Cubic splines KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  20. Bezier • Paul de Faget de Casteljau, Citroen, 1959 • Pierre Bezier, Renault, UNISUF system, 1962 • A.R. Forrest, Cambridge, 1970 KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  21. Spline curves • J. Ferguson , Boeing Co., 1963 • C. de Boor, W. Gordon, General Motors, 1963 • to interpolate given data • piecewise polynomial curves with certain differentiability constraints • not to design free form curves KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  22. B-spline • C. de Boor, 1972 • W. Gordon, Richard F. Riesenfeld, 1974 • Larry L. Schumaker • Tom Lyche • Nira Dyn KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  23. Piecewise cubic hermite interpolation KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  24. Cubic spline interpolation KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  25. Cubic spline interpolation KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  26. Spline interpolation based on the 1-norm Cubic Spline Interpolation with Natural boundary condition KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  27. Condition number KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  28. Condition number of B-spline basis Tom Lyche and Karl Scherer, On the p-norm condition number of the multivariate triangular Bernstein basis, Journal of Computational and Applied Mathematics 119(2000) 259-273 KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  29. Stability KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  30. Blossom KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  31. Blossom KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  32. B-spline problems • Degree Elevation • Degree Reduction • Knot Insertion • Knot Deletion Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design, 4th ed, Academic Press (1996) Ronald N. Goldman, Tom Lyche, editors, Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces, SIAM (1993) KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  33. Bezier Degree Reduction KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  34. Bezier Degree Reduction • Least square method • Legendre-Bernstein basis transformations Rida T. Farouki, Legendre-Bernstein basis transformations, Journal of Computational and Applied Mathematics 119(2000) 145-160. Byung-Gook Lee, Yunbeom Park and Jaechil Yoo, Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction, Computer Aided Geometric Design 19(2002) 709-718. KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  35. Bezier Degree Reduction with constrained KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  36. Quasi-interpolants KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  37. Reproduce spline space KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  38. A cubic quasi-interpolant KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  39. Quasi-interpolants • local property • the same order as the best spline approximation • can be computed directly without solving systems of equations Lyche, T. and L. L. Schumaker, Local spline approximation methods, Journal of Approximation Theory 15(1975) 294-325. Lyche, T.,L. L. Schumaker and S. Stanley, Quasi-interpolants based on trogonometric splines, Journal of Approximation Theory 95(1998) 280-309. KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

  40. Contents • Affine combination • Bezier curves • Spline curves • B-spline curves • Condition number • L1-norm spline • Quasi-interpolant Reference “Spline Methods Draft” Tom Lyche and Knut Morken http://kowon.dongseo.ac.kr/~lbg/cagd/ KMMCS, April. 2003, Lee Byung-Gook, Dongseo Univ., E-mail:lbg@dongseo.ac.kr

More Related