270 likes | 466 Views
EAST 等离子体启动. 肖炳甲 2009/02/23. Plasma Startup: 击穿和建立、电流上升、成形. 物理问题. 低环电压 breakdown 降低磁体端电压、减小磁通消耗和降低逃逸 上升段电流、位置、位形的控制 磁场、平衡重建 , 导体间的耦合,等离子体模型,真空室的三维结构的影响 … 电流上升与不稳定性的关系, Profile 控制 , operation limits. 击穿与初始上升实现. PF/PS 系统 = 》 合适的欧姆场和垂直场 充气 = 》 在合适的时间内合适的气体压力
E N D
EAST等离子体启动 肖炳甲 2009/02/23
物理问题 • 低环电压breakdown • 降低磁体端电压、减小磁通消耗和降低逃逸 • 上升段电流、位置、位形的控制 • 磁场、平衡重建, 导体间的耦合,等离子体模型,真空室的三维结构的影响… • 电流上升与不稳定性的关系,Profile控制, operation limits
击穿与初始上升实现 • PF/PS系统 =》合适的欧姆场和垂直场 • 充气 =》在合适的时间内合适的气体压力 • Wall conditioning => Low impurities • Pre-ionization aided by ICRF or LHW • Enough seed electrons in longer duration to meet the Townsend Avalanche in a not well-controlled stray field and Loop Voltage. • RF heating aiding to overcome radiation barrier • IP**2*R + Paux > Etransport + Eradiation
基本模型 • 系统构成: • PF线圈 • PF电源及电阻 • 真空室及被动结构 • 击穿后,等离子体 • 模型方程
线圈系统: • PF互感 快控: 被动结构
Coil No. Rated current (kA) Max. voltage (kV) load steady voltage (V) R1 (R2) (mΩ) PS1 1 -14.5~ 14.5 1.2 280 150 PS2 2 -14.5~ 14.5 1.2 280 150 PS3 3 -14.5~ 14.5 1.2 280 150 PS4 4 -14.5~ 14.5 1.2 280 150 PS5 5 -14.5~ 14.5 1.2 280 150 PS6 6 -14.5~ 14.5 1.2 280 150 PS7 7 ,9 -14.5~ 14.5 2.4 560 150 PS8 8,10 -14.5~ 14.5 2.4 560 150 PS9 11 -14.5~ 14.5 0.6 280 150 PS10 12 -14.5~ 14.5 0.6 280 150 PS11 13 -14.5~ 14.5 0.26 160 1500 PS12 14 -14.5~ 14.5 0.26 160 1500 ASIPP Parameters of PF Power Supply • Note: • (1) Coil 7 and Coil 9 is in series, they share one power supply, same as Coil 8 and Coil 10. • (2)Max. Voltage is only used as plasma initiation and fast rising. • R1 =R2, it is designed according to the plasma scenario some years ago. They (PS1—PS10) can be respectively changed from zero to above value in step 7.5mΩ, Other (PS11—PS12 ) is in step 50mΩ .
EAST 等离子体控制中的电磁测量 极向场线圈电流(Rowgowski):12 等离子体电流(Rogowski, in-/ex-vessel) :2 磁通环:37 磁探针:38 内部线圈电流:1 控制目标: R ~ 1.8, a~0.4 Ip ~ 0.5 MA (1 MA, 1.5MA) delta 0.3-0.6 k ~ 1.5 – 2.0 DN/SN
击穿条件 1. 足够长的连接长度和环电压 Or Emin = 950p/ ln(3.88pL) For EAST: MPF-IP~3Vs/8kA, dI/dtmax=20 kA/s so Vmax=MdI/dtmax~ 7.5 V E~6 V/2PiR~0.5 V/m (0.7 for JET, 0.3 for ITER) Bp<10 Gauss @Bt=2 T Bp<1 Gauss @Bt=0.2 T (Itf~1kA) 2. 合适的气体压力 1. Tanga et al., in Tokamak Startup 2. Lloyd B et al., Nucl Fusion 31
击穿优化方法 • 初始零场 • CS尽可能达到最大 • 选取预期初始等离子体圆周上数点,调节线圈电流,用最小二乘得到IM state • 击穿电压及零场 • Idot总数:4 • CS以相同的下降率 • 上下对称 • 预期击穿时间及环电压(或电场) • 基于给定PF电压,得到Idot求解回路方程,得到Ivv,从而计算磁场和环电压,与目标值作最小二乘优化得到Idot和VS • Ip=0,RPF=0,
Optimization target: • Initial Flux • Null region • Emax~ 0.5 V/m • Initial ramp-up rate and Bz • Field Curvature • Limitation: • Imax, Idotmax Courtesy to J. Leuer,
初始上升 • Bz=m0Ip/R0[ln(8R0/a)+li/2+b-1.5] • LPdIP/dt=V0-Vres • Assume: Vres/V0=0.5 • dIP/dt~ 0.5-1 MA/s • Spitzer Resistivity: • (ne=1e19,Te=100eV=>Rp~20mW) • Lp~4.8mH
击穿电阻及PCS waveform • RPF=mean(Vtraj/Itraj) • 再次求解(1),得到新的V和I • Itraj: Feedback Current Control • Vtraj: Feedforward • Note:根据实际的电阻可调整最近的RPF,重新计算(1)
PF current /PS Voltage Trajectory @ Plasma Current Ramp-up: #8815
等离子体电流上升(环电压=1V only) 对极向场电压的要求
Proposal: Startup optimization • Objectives: • Robust startup • Low loop voltage initiation • Flux consumption reduction • Shaping while ramping, position control at earlier time, impurity reduction • MHD avoidance while ramping up, ramping-up margin & operation limits, preliminary profile control • Methods • Null field adjustment, various IM states and BD resistor tuning • Gas filling scan • Ramp-up rate adjustment in accordance with Bv variation • Assistance of ICRF(100 kW?) pre-ionization • LHW (200 kW?) in the startup, time: just after plasma initiation is possible? • Bt scan • Diagnostics • Magnetics, CCD, density, Te, P(RF), magnetics at the PS end, Bolometry, Impurity • Modeling: • Reconstruction, breakdown, TSC, DIII-D analysis tools • Machine times: > 2 effective days