650 likes | 779 Views
SPSS 16 实用教程. 第 5 章方差分析. 5.1. 5.2. 方差分析基本概念. 单因素方差分析. 5.3. 多因素方差分析. 5.4. 协方差分析. 为了进行两组以上均数的比较,通常可以使用方差分析方法。本章介绍方差分析基本概念、单因素方差分析、多因素方差分析及协方差分析。. 5.1 方差分析基本概念. 方差分析是 R.A.Fister 发明的,用于两个及两个以上样本均数差别的显著性检验。方差分析方法在不同领域的各个分析研究中都得到了广泛的应用。从方差入手的研究方法有助于找到事物的内在规律性。.
E N D
SPSS 16实用教程 第5章方差分析
5.1 5.2 方差分析基本概念 单因素方差分析 5.3 多因素方差分析 5.4 协方差分析
为了进行两组以上均数的比较,通常可以使用方差分析方法。本章介绍方差分析基本概念、单因素方差分析、多因素方差分析及协方差分析。
5.1 方差分析基本概念 方差分析是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。方差分析方法在不同领域的各个分析研究中都得到了广泛的应用。从方差入手的研究方法有助于找到事物的内在规律性。
受不同因素的影响,研究所得的数据会不同。造成结果差异的原因可分成两类:一类是不可控的随机因素的影响,这是人为很难控制的一类影响因素,称为随机变量;另一类是研究中人为施加的可控因素对结果的影响,称为控制变量。受不同因素的影响,研究所得的数据会不同。造成结果差异的原因可分成两类:一类是不可控的随机因素的影响,这是人为很难控制的一类影响因素,称为随机变量;另一类是研究中人为施加的可控因素对结果的影响,称为控制变量。
在影响教学效果的因素中,就有两类因素:一是人为可控制的变量,如教学的方法、教材的使用;还有一类是随机的变量,如学生接受知识的能力(这里指的是一个普通班级的学生接受知识能力,因此是随机的。在某些情况下,比如将学生按学习水平、能力分成高、中、低几个班级,在这时,学生接受知识的能力是一个控制变量。因此,随机变量和控制变量的划分并不是绝对的,根据分析情况的不同而不同,应区别对待)。在影响教学效果的因素中,就有两类因素:一是人为可控制的变量,如教学的方法、教材的使用;还有一类是随机的变量,如学生接受知识的能力(这里指的是一个普通班级的学生接受知识能力,因此是随机的。在某些情况下,比如将学生按学习水平、能力分成高、中、低几个班级,在这时,学生接受知识的能力是一个控制变量。因此,随机变量和控制变量的划分并不是绝对的,根据分析情况的不同而不同,应区别对待)。
可以对两个普通的班级分别使用两种不同的教学方法,一段时间后进行测试,就可以得到不同教学方法对教学效果的影响。同样,也可以使用不同的教材,分析其对教学效果的影响。可以对两个普通的班级分别使用两种不同的教学方法,一段时间后进行测试,就可以得到不同教学方法对教学效果的影响。同样,也可以使用不同的教材,分析其对教学效果的影响。
方差分析就是实现上述功能的分析方法。方差分析的基本思想是:通过分析研究不同变量的变异对总变异的贡献大小,确定控制变量对研究结果影响力的大小。通过方差分析,分析不同水平的控制变量是否对结果产生了显著影响。如果控制变量的不同水平对结果产生了显著影响,那么它和随机变量共同作用,必然使结果有显著的变化;如果控制变量的不同水平对结果没有显著的影响,那么结果的变化主要由随机变量起作用,和控制变量关系不大。方差分析就是实现上述功能的分析方法。方差分析的基本思想是:通过分析研究不同变量的变异对总变异的贡献大小,确定控制变量对研究结果影响力的大小。通过方差分析,分析不同水平的控制变量是否对结果产生了显著影响。如果控制变量的不同水平对结果产生了显著影响,那么它和随机变量共同作用,必然使结果有显著的变化;如果控制变量的不同水平对结果没有显著的影响,那么结果的变化主要由随机变量起作用,和控制变量关系不大。
根据控制变量的个数,可以将方差分析分成单因素方差分析和多因素方差分析。单因素方差分析的控制变量只有一个(但一个控制变量可以有多个观察水平),多因素方差分析的控制变量有多个。根据控制变量的个数,可以将方差分析分成单因素方差分析和多因素方差分析。单因素方差分析的控制变量只有一个(但一个控制变量可以有多个观察水平),多因素方差分析的控制变量有多个。
5.2 单因素方差分析 5.2.1 统计学上的定义和计算公式 定义:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。
计算公式: 采用的统计推断方法是计算F统计量,进行F检验。总的变异平方和记为SST,分解为两个部分:一部分是由控制变量引起的离差,记为SSA(组间Between Groups离差平方和);另一部分随机变量引起的SSE(组内Within Groups离差平方和)。于是有
其中, 其中,k为水平数;ni为第i个水平下的样本容量。可见,组间样本离差平方和是各水平组均值和总体均值离差的平方和,反映了控制变量的影响。
5.2.2 SPSS中实现过程 研究问题 表5-1 三组学生的数学成绩
实现步骤 图5-1 在菜单中选择“One-Way ANOVA”命令
图5-4 “One-Way ANOVA:Post Hoc Multiple Comparisons”对话框
5.2.3 结果和讨论 (1)首先是单因素方差分析的前提检验结果,也就是Homogeneity of variance test
(5)输出结果的最后部分是各组观察变量均值的折线图,如图5-6所示。(5)输出结果的最后部分是各组观察变量均值的折线图,如图5-6所示。
5.3 多因素方差分析 5.3.1 统计学上的定义和计算公式 定义:多因素方差分析中的控制变量在两个或两个以上,它的研究目的是要分析多个控制变量的作用、多个控制变量的交互作用以及其他随机变量是否对结果产生了显著影响。例如,在本章开始讲述的例子,在获得教学效果的时候,不仅单纯考虑教学方法,还要考虑不同风格教材的影响,因此这是两个控制变量交互作用的效果检验。
多因素方差分析不仅需要分析多个控制变量独立作用对观察变量的影响,还要分析多个控制变量交互作用对观察变量的影响,及其他随机变量对结果的影响。因此,它需要将观察变量总的离差平方和分解为3个部分:多因素方差分析不仅需要分析多个控制变量独立作用对观察变量的影响,还要分析多个控制变量交互作用对观察变量的影响,及其他随机变量对结果的影响。因此,它需要将观察变量总的离差平方和分解为3个部分:
多个控制变量单独作用引起的平方和; 多个控制变量交互作用引起的离差平方和; 其他随机因素引起的离差平方和。
以上F统计量服从F分布。SPSS将自动计算F值,并根据F分布表给出相应的相伴概率值。以上F统计量服从F分布。SPSS将自动计算F值,并根据F分布表给出相应的相伴概率值。
5.3.2 SPSS中实现过程 研究问题 表5-2 三组不同性别学生的数学成绩
实现步骤 图5-7 在菜单中选择“Univariate”命令
图5-10 “Univariate: Post Hoc Multiple Comparisons for Observed Means”对话框
5.3.3 结果和讨论 (1)SPSS输出结果文件中的第一部分如下两表所示。
(2)输出的结果文件中第二部分如下表所示。(2)输出的结果文件中第二部分如下表所示。
(3)输出的结果文件中第三部分如下表所示。(3)输出的结果文件中第三部分如下表所示。
(4)输出的结果文件中第四部分如下表所示。(4)输出的结果文件中第四部分如下表所示。
(5)输出的结果文件中第五部分如下表所示。(5)输出的结果文件中第五部分如下表所示。