240 likes | 500 Views
Next Generation Sequencing: Application to Transfusion M edicine and I mmunohematology ?. O. Preynat-Seauve Laboratory of immunohematology Hematology Unit Laboratory medicine unit Geneva University Hospital olivier.preynat-seauve@hcuge.ch. DNA and RNA sequencing.
E N D
NextGeneration Sequencing: Application to Transfusion Medicineand Immunohematology? O. Preynat-Seauve Laboratory of immunohematology Hematology Unit Laboratorymedicine unit Geneva UniversityHospital olivier.preynat-seauve@hcuge.ch
DNA and RNA sequencing “the process of determining the precise order of nucleotides within a nucleic acid molecule” DNA RNA Plants Microbes Human/animal cells and tissues Vaccines ... Blood products ...
The history of sequencing 1977: « Maxam Gilbert Sequencing » 2013: « nextgenerationmethods » or « highthroughput sequencing » >500 000 sequencing operationscanberunned in parrallel WHOLE genome, transcriptome , miRNome etc. Only fragments
The mostwidelyused system isprovided by the Illumina company “the simultaneous sequencing of millions of tiny fragments of DNA on the surface of a glass slide about the size of a large matchbox”
The machine produces millions of short sequencescalled « READS » Millions of reads ATGG...CGCA TTGA...ATGCG TATA....CTA GGC...AATAA etc. etc. Reads (= fragments) are reasembled by softwares into « CONTIGS » TTGA...ATGCGGGC...AATAAATGG...CGCA CONTIGS are identifiedusingdatabases (bioinformatics) each portion of the genome/RNome is represented multiple times in different fragment frames (fragmentation is at random) Genome position
Wholegenome/transcriptomesequencing: interest for immunohematology and transfusion medicine ?
Wholesequencingfor immunohematology ? • Single analysis of the entireblood groups genotype • Determination of a global profile in one step • Exhaustive identification of blood groups variants, rare genotypes etc. • Targets ? Blood groups antigens, HLA, minorantigens
* Tooheavy /expensive/slow as compared to existingmethods? * Less quantitative than PCR ? * Sensitivity ? * False positive/false negativerates? (and controls for eachgene!) * Can weeasilydeduce the phenotypefrom the genotype ?
To technicallysequence a wholegenomeiscurrently « easy » and not to muchexpensive … and finallyyouobtain a CD with millions and millions of data Remark: do not start if you do not have in your team a bioinformatician! sequencing (2 weeks) analysis (months, years!)
Interest of sequencing for transfusion medicine? • Landscape of nucleicacidspresent in bloodproducts ? • The completenucleicacid content in bloodproductsis not known Blood product Nucleicacidsassociatedwithresidualleukocytes Cell-free nucleicacids Nucleicacidassociatedwithcells (redbloodcells or platelets)
Landscape of non-humannucleicacids in bloodproducts ? • All the virusesthat « escape » to bloodproducts qualification: • Emergent viruses ? • Inocuousviruses(thatcould have impact on immunocompromisedpatients) • Otherinfectious agents signatures ? Freshfrozen plasma Redbloodcellsconcentrate Plateletsconcentrate Reinforcment (or not) of pathogensinactivation ? Additonal virus testing for immunocompromised patients ?
Development of a bioinformaticsoftwarefor virus screen in a wholeRNA sequence (Illumina) Specificity Pos. controls Assemblies (CONTIGS) Dr Thomas Petty, postdoc
Pipeline validation using CMV/Sendaï virus-infectedcells Dr Erika Cosset, postdoc Dr Thomas Petty, postdoc
neg. control Virus-free samples (glioblastoma) neuroepithelialcells neuroepithelialcells+CMV neuroepithelialcells+Sendaï virus Percent of the virus genomethatiscovered by reads = GENOME COVERAGE Number of matchingreads
This binarycomputationalanalysismixinggenomecoverageand number of readsprovideuseful informations in thiscontext of virus discovery High virus replication Low virus replication Latent Latent virusesreactivatingsomegeneswithout virions replication (CMV) No virions/viral genereactivation
Ongoingproject: virus screen in bloodproducts 10 pools of 10 plasma unit samples ( 100 donors) 10 pools of 10 redbloodcells unit samples ( 100 donors) Negativecontrols (buffer alone) Positive controls: bloodproductssamplesinfected by CMV/Sendaï virus DNA seq RNA seq Bioinformatic pipeline Exhaustive « picture »of the virologicalstatus of bloodproducts
CELLS mRNA (haemoglobin !) rRNA tRNA miRNA mitDNA residual plasma Cell-free nucleicacids plasma Cell-free nucleicacids Residualleukocytes Genomic/mitochondrial DNA all RNAs Microparticles miRNA Redbloodcells plasma platelets
Cell-free nucleicacids (plasma) • ds short DNA (70-200 base pair) • ds long DNA (< 21 kb) • mRNA • miRNA (very active !) • NeutrophilExtracellularTraps (NETs) • Sources: cellnecrosis, apoptosis, active secretion (lymphocytes, neutrophils) • Nucleicacidspresent in microparticles BIOLOGICAL ACTIVITY IN RECIPIENT ?
NGS and transfusion: concludingremarks • research: provide a new tool to improve the knowledge of transfusion and immmunohematology • routine: Potentialinterest in the future ??
Laboratory of immunohematology Geneva UniversityHospital Erika Cosset Thomas Petty Olivier Preynat-Seauve ARTERES Foundation, Geneva ISREC Foundation, Lausanne Egon NaefFoundation, Geneva Department of Genetic and LaboratoryMedicine Laboratory of Virology Geneva UniversityHospital Laurent Kaiser Samuel Cordey Oncology Unit Geneva UniversityHospital Pierre-Yves Dietrich Valérie Dutoit Swiss Institute of Bioinformatic EvgenyZbodnov IsmelPalladieau GenomicCoreFacility Faculty of medicine Geneva FASTERIS SA, Plan-Les-Ouates Blood Transfusion Center Geneva UniversityHospital Emanuel Rigal Soraya El-Dusouqui Hematology Unit Geneva UniversityHospital Thomas-Pierre Lecompte