1 / 84

Fenolne kisline

Fenolne kisline. Rdeča vina: 100-200 mg/L Bela vina: 10-20 mg/L. Fenolne kisline v grozdju. Benzojske kisline Esterozidi Estri (npr. elagi tanini) V peškah (npr. galna kislina) V vinih (tudi iz lesa) Cimetne kisline V vakuolah (meso in kožice)

kevyn
Download Presentation

Fenolne kisline

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fenolnekisline • Rdeča vina: 100-200 mg/L • Bela vina: 10-20 mg/L

  2. Fenolnekisline v grozdju • Benzojske kisline • Esterozidi • Estri (npr. elagi tanini) • V peškah (npr. galna kislina) • V vinih (tudi iz lesa) • Cimetne kisline • V vakuolah (meso in kožice) • Eterozidi z glukozo (p-kumarna kislina) • Estri z H2T (kofeinska kislina) • Hydroxycinnamyltartaric acids (ICT) • Substrates of PPO • Acylated anthocyanins

  3. trans-resveratrol V kožicah Odziv na bolezni Francoski paradox Polimerizacija (viniferini) Stilbenes

  4. C6-C3-C6 skelet Flavonoidi

  5. Biosintezaflavonoidov

  6. Rumeni pigmenti V grozdju: 3 ali 7 glukozidi (Rha) V epidermisu vakuol V belem in rdečem grozdju Miricetin samo v rdečem V vinih: 20-30 mg/L (aglikoni) Flavoni

  7. Rdeči pigmenti, zelo razširjeni v naravi (sadje, rastline) V grozdju: acilirani glukozidi (razen pri MP) Locirani v celicah kožic Večinoma vezani z drugimi spojinami (kopigmentacija) Antociani

  8. Anthocyanidin anthocyanin acylated anthocyanin Antocianini

  9. Resonance Reaktivnostantocianov • Izmenjava naboja • barva molekule

  10. Anthocianini & pH pH 3 pH 7-8 pH 3,2-3,5 pH > 11 At pH 3, only the 42% of anthocyanins is in colored form (flavilium cation or quinonic base); this percentage decrease at 20% at pH 4

  11. Substitucija na B obroču Glucosylation and acylation shift barve proti oranžni (ipsochromic shift) Antocianini & barva

  12. Kopigmentacija • Barva antocianov v naravnih matriksih in v modelnih raztopinah • Kompleksi-reakcije med pigmenti in brezbarvnimi sestavinami (kopigmenti) • Fenolne kisline, flavanoli, flavoni… • Hiperkromični in bathocrhomic shift v VIS spektra • Steric stabilizacija molekule • Ekstremna variabilnost v barvi antocianov v naravi

  13. Kopigmentacijskimehanizem • Hydrogen bonds (Osawa, 1982) • Boultonov model (2001) • Aggregates originated by superimposition of planar sheets • Clockwise or counterclockwise helix, depending on pH • π-π (hydrophobic) interactions between benzene rings of anthocyanins and copigments • π-π interaction can be made also between only anthocyanins (auto-association)

  14. Antocianini & SO2 • Faktorji, ki vplivajo na reakcijo • pH in disociacijsko ravnotežje • Acetaldehid (MeCHO) (vezava SO2) • Tanini (stabilizacija antocianov)

  15. Only on free forms Anthocianini breakdown reactionsTermalnadegradacija/razgradnja 1

  16. Even on glycosides Anthocyanins breakdown reactionsThermal degradation 2

  17. Maceration T and extraction (Ribéreau-Gayon et al., 1970) Anthocyanins thermal degradation • T > 20 °C • Storage and maceration

  18. Razgradnereakcijeantocianovoksidativnarazgradnja • Polimerizacija s kinoni in semikinoni • Razpad/razgradnja heterocikla (benzojska ksl.) • Malvidin stabilnejši od cianidina • Najverjetnejši vpliv obojega: T and O2

  19. Anthocyanins breakdown • Pomen v praksi. •  Spremembe v barvi • Izguba na intenziteti barve • Sprememba barve proti rumenim odtenkom, povečanje “tona” barve CI = DO 420 nm + DO 520 nm + DO 620 nm Hue = DO 420 nm / DO 520 nm

  20. Enološkaevolucijaantocianov • 200 - 2.500 mg/L v grozdju • (monoglukozidi in acilirani) • Izlužljivost 50-60 %  200 - 1.500 mg/L v vinu • Prevladuje malvidin (50-90 %) • Razgradnja in oksidacija med zorenjem • Reakcije s tanini •  Starejša vina: 0-50 mg/L • zelo malo v prosti obliki • večinoma monoglukozidi

  21. 3-flavanoli 3,4-flavandioli Kondenziranitanini Flavanoli

  22. Flavanoliavan-3-ols (catechns) • V grozdnih kožicah in peškah • Estri galne kisline

  23. Proantocianidini (izantocianidinov s segrevanjem v kislemokolju) Taninigrozdja in vina V grozdju: v polimeriziraniobliki Flavan-3,4-diols (leucoanthocyanes)

  24. Procianidin B Ribéreau-Gayon et al., 1998

  25. Reaktivnostprocianidinov

  26. Polimerniprocianidini Ribéreau-Gayon et al., 1998

  27. Tanini • MW 500 – 3000 • Precipitation of gelatin and proteins, formation of blue-dark precipitates by reaction with ferric salts • Grozdni tanini : kondenzirani tanini (polimeri flavanolov) • Celice kožic - tri skupine taninov • Prosti v soku vakuol • Granular form (internal layers) • Big clusters (superficial layers) • Vezani na tonoplaste (interakcije s proteini) • Vezani na celične stene (interakcije s polisaharidi) • Tanini pešk: • Manj kompleksni in polimerizirani • Bolj reaktivni in astringentni

  28. Reaktivnosttaninov • Against proteins • Astringency Ribéreau-Gayon et al., 1998

  29. Dovzetnost polifenolov za oksidacijo Oksidacijapolifenolov

  30. Redox ravnotežje v vinu Raztopljeni kisik Težke kovine (Cu2+; Fe3+) Fenolne spojine Peroksidi in prosti radikali Fenolne spojine Žveplov dioksid Askorbinska kislina glutation OKSIDATIVNO OKOLJE REDUKTIVNO OKOLJE

  31. To je spremenljivka povezana z t.i. redoks stanjem v mediju, torej s koncentracijo oksidativnih in reduktivnih komponet v raztopini Redox potencial Ribéreau-Gayon et al., 1998

  32. Redox potential Ribéreau-Gayon et al., 1998

  33. White wines AF: alcoholic fermentation Red wines AF: alcoholic fermentation MLF: malolactic fermentation Changes in Eh during winemaking (Vivas e Glories, 1995) Ribéreau-Gayon et al., 1998

  34. O2 dissolution • Pretoki in zračenje • Skupna kapaciteta porabe kisika • Bela vina: 80 mg/L • Rdeča vina: 800 mg/L

  35. O2 dissolution Ribéreau-Gayon et al., 1998

  36. O2 solubilization during the main technological operations(Vivas, 1997)

  37. Chemical oxidation • Directly electroactive substances • Fe2+/Fe3+; Cu+/Cu2+ • Activation of O2 • Formation of peroxides (ROO•) and superoxides (•O2-) • Weakly electroactive substances • Conjugated dienols • They react with ROO• e •O2- • Radical polymerization • Formation of acetaldehyde from EtOH (aroma modifications) • Formation of quinones from polyphenols • Sensory effects • Color, aroma, taste

  38. Oxidative polymerization Direct intervention of O2 (Fe3+ e Cu2+) Ribéreau-Gayon et al., 2006

  39. Indirektnapolimerizacija • Reakcije z aldehidi (A obroč) • MeCHO from oxidation of EtOH

  40. Evolution of tannins • 1-4 g/L v vinih ob koncu AF • Direktna in via acetaldehid (indirektna) polimerizacija • Povečanje kompleksnosti • Oksidativni razpad/razgradnja • Čiščenje • Reakcije z antociani • Stabilnost barve

  41. Stability of anthocyanins and tannins • Čisti antociani zelo nestabilni v raztopini (vinu) • Čisti tanini slabo stabilni v raztopini (vinu) • Mešana raztopina s tanini in antociani Mixed : večja stabilnost

  42. KondenzacijskereakcijeTanini + antociani • Direktna kondenzacija • V steklenici • V nerjavnih cisternah • Indirektna (MeCHO-mediated) kondenzacija • Zorenje v sodih

  43. Ribéreau-Gayon et al., 1998 Bottle Reducing environment T-A kondenzacija

  44. Stainless steel vats O2 – after a racking A-T condensation Ribéreau-Gayon et al., 1998

  45. Direktnakondenzacija • Dependent on the T/A ratio; it is max. for a 1:10 ratio • Low tannin level: anthocyanins are easily degraded • High tannin level: tannin tend to self-polymerize without involving anthocyanins

  46. Ribéreau-Gayon et al., 2006 Indirektnakondenzacija

  47. Indirektnakondenzacija • Increase of CI and shift toward mauve hues • Importance of T/A ratio; good stabilization for values of 4 • Anthocyanins in polymerized forms: more stable as regards the loss in color (hydration and sulfiting), toward oxidation and thermal breakdown • Temperature and O2 (e.g. microox) improve condensation; too high levels lead to pigments breakdown • Acid pH favors condensation • SO2 diminution of available MeCHO • Enološki tanini in lesni tanini improve the formation of MeCHO from EtOH during aging

  48. Ideal situation Ravnotežje med between antociani in tanini • Phenolic ripeness Ribéreau-Gayon et al., 1998

  49. Real case Equilibrium between A & T Ribéreau-Gayon et al., 1998

  50. Effect of extraction technologies

More Related