150 likes | 302 Views
Development of Physics and Astronomy in the 19 th Century. By Hannah Diehl. Table of Contents. Michael Faraday James Clerk Maxwell Ludwig Boltzmann Christian Doppler Benjamin Franklin William Herschel Georg Ohm Daniel Kirkwood Josiah Willard Gibbs Joseph Henry Gustav Kirchhoff
E N D
Development of Physics and Astronomy in the 19th Century By Hannah Diehl
Table of Contents Michael Faraday James Clerk Maxwell Ludwig Boltzmann Christian Doppler Benjamin Franklin William Herschel Georg Ohm Daniel Kirkwood Josiah Willard Gibbs Joseph Henry Gustav Kirchhoff Leon Foucault
Michael Faraday Michael Faraday is the physicist accredited for the discoveries of electro-magnetic induction, electro-magnetic rotation, the magneto-optical effect, diamagnetism, field theory, as well as many others. He was born in London’s Newington Butts on September 22, 1791. When Faraday was fourteen, he was apprenticed as a bookbinder to George Riebau. During the seven years of his apprenticeship, Faraday took a deep interest in science, specifically chemistry. He was able to conduct chemical experiments and build an electro-static machine. Faraday was able to obtain tickets to hear Sir Humphry Davy’s lectures and approached him for a job in the science field. Davy did not have any positions available at the time, but a year later Davy called Faraday for another interview, and he was able to fill the position of Chemical Assistant at the Royal Institution.From October 1813 to April 1815, Davy embarked on a scientific tour of the continent and received passports for himself, his wife, her maid, and a valet. Faraday reluctantly agreed to fill the latter role. From 1816 to 1817 Faraday continued to work under Davy and learned from Brande, occasionally helping Davy directly as with the Miner’s Safety Lamp. Between 1818 and 1822 Faraday worked on improving the quality of steel with surgical instrument maker James Stoddart. On May 21, 1821 Faraday was promoted in the Royal Institution to be Superintendent of the House. Twelve days later, he got married to Sarah Bernard. 1821 was also the year he made one of his first major contributions to science. On the third and fourth of September, Faraday undertook a series of experiments which lead to his discovery of electro-magnetic rotation.
James Clerk Maxwell James Clerk Maxwell is acclaimed to be the father of modern physics. He was born on June 13th, 1831 in Edinburg on 14 India Street in a part of Edinburg’s Georgian New Town, but shortly after his birth, his family moved to their house at Glenlair and Maxwell enjoyed a country upbringing. Even as a small child, Maxwell exhibited a great curiosity and he wanted to know hoe everything worked. When he was eight, Maxwell’s mother died and his parents hopes to homeschool him until age 13, fell through and it was decided that Maxwell would go to Edinburg Academy. At age 14, Maxwell wrote his first paper on ovals, defining ellipses and curves with multiple foci. His paper was read to the Royal Society of Edinburg. His work was not fully original, but it was remarkable for a 14 year old. At 16, Maxwell started taking classes at the University of Edinburg. It was record that he had borrowed many books while he was an undergraduate student, including books on differential calculus, geometry, optics, mechanics, and the principles of mechanism. Later Maxwell decided to go to Trinity College, where he believed it would be easier to obtain a fellowship there. He indeed did earn his fellowship and graduated with a mathematics degree form the Trinity College in 1854. Maxwell applied for many positions as professors, and was also offered many jobs as a professor, and he held numerous different positions.One of Maxwell’s greatest works was expounding on the theories of Michael Faraday on electric and magnetic lines of force. Maxwell had found that a few simple mathematical equations could express the behavior of electric and magnetic forces. Although Maxwell was best know for his work on electromagnetism, he also studied many other topics, such as color and astronomy. Maxwell can up with a system of classification of colors based on four variables, hue, intensity, brightness, and tint. Maxwell also worked on astronomy, winning the Adams prize on his paper On the Stability of the Motion of Saturn’s Rings in 1870. He was the first to show that the rings of Saturn were made of particles. Maxwell’s most famous work was his Treatise on Electricity and Magnetism, contain all the basic equations used in electromagnetism. The work also develops the idea that electric currents produce magnetic field and vice versa. Also Maxwell worked on the second law of thermodynamics, coming up with a paradox to show that the second law of thermodynamics is a statistical law describing the properties of large numbers of particles.
Ludwig Boltzmann Ludwig Boltzmann was born on February20, 1844 in a house on the main street of the Landstrasse of Vienna in Austria. His father was a tax collector, and his grandfather came from Berlin. His mother’s side of the family came from Salzburg. Boltzmann, who was an ambitious, curious student, interested in everything nature, attended high school in Upper Austria. When he was 15, Boltzmann’s father died. After high school, Boltzmann went on to study physics at the University of Vienna. IN 1866, he received his doctorate and became a lecturer in the year following. Two years later, we as appointed to be the Professor of Mathematical Physics at the University of Graz. Boltzmann worked with many other famous scientists including Bunsen, Konigsberg, Kirchhoff, and Helmholrz. Later in his life, Boltzmann worked with Maxwell, trying to explain the thermodynamics of gases.
Benjamin Franklin Franklin was the fifteenth born in his penurious family in 1706 in Boston, Massachusetts. Although his family could only afford to allow two years of formal schooling, Franklin became and avid reader. After apprenticing with his brother as a printer, Franklin moved to Philadelphia and began more of a scientific career, studying many things from meteorology, with predicting storm paths and charting the Gulf Stream, to studying electricity. His kite experiment that inquired on lightning being in an electrical form, gained him international recognition. Franklin also proposed, on the contrary to the common belief that electric and magnetic phenomena were explained by separate weightless fluids attracting and repulsing, that electricity was produced by one fluid flow of energy from one body to another, which he named first as being positive and negative. He was also the first to discover the conservation of charge. Although it is not clear that Franklin himself had ever executed such, in 1750 he published the famed experiment to prove that lightning was electrical. This has remained part of his legacy with his image of holding a kite in a thunderstorm. The experiment was successfully carried out by a Frenchmen, not with a kite, but a 40-foot iron rod. Franklin’s studies on electrical conductors lead to his invention of a pointed lightning rod to protect buildings, including Independence Hall.
Daniel Kirkwood American astronomer Daniel Kirkwood was born on September 27, 1814 in Harford County, Maryland. As a child, he worked unhappily on a farm, which lead him to his local school. He graduated in mathematics form the York County Academy and taught there for the next five years. After being the principle for Lancaster High School and Pottsville Academy, Kirkwood became a Professor of Mathematics at Delaware College and then Indiana University. As an astronomer, Kirkwood studied asteroids, comets, meteor showers, and Saturn’s rings. Kirkwood arranged the discovered asteroids based upon their distance from the sun and found several gaps of with little to no asteroids. He found that these gaps were result of orbital resonance from Jupiter. These gaps are now named the Kirkwood Gaps in his honor. Kirkwood was also the first to suggest that meteor showers were debris form comets and that the Cassini Division in Saturn’s ring system was due to resonance form one of Saturn’s moons. Kirkwood also discovered a pattern relating a planets distance form the sun and their rotational periods, which is now called Kirkwood’s Law, but more recent research has proved that the pattern does not hold throughout the solar system. Throughout his career, Kirkwood wrote 129 publications, including three books and he has a law, an asteroid, a moon crater, a street, and an observatory named in his honor.