1 / 16

Superconducting properties in filled-skutterudite PrOs 4 Sb 12

Superconducting properties in filled-skutterudite PrOs 4 Sb 12. Kitaoka Lab. M1 Takayuki Nagai. references. ・ H.Kotegawa et al ,Phys.Rev.Lett. 90 ,027001 (2003) ・ M.Yogi et al ,Phys.Rev. B 67 ,180501(R) (2003). Filled-skutterudite : 充填スクッテルダイト. Abstract. abstract.

khuong
Download Presentation

Superconducting properties in filled-skutterudite PrOs 4 Sb 12

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Superconducting properties infilled-skutterudite PrOs4Sb12 Kitaoka Lab. M1Takayuki Nagai references ・H.Kotegawa et al,Phys.Rev.Lett. 90,027001 (2003) ・M.Yogi et al,Phys.Rev. B 67,180501(R) (2003) Filled-skutterudite : 充填スクッテルダイト

  2. Abstract abstract ・Filled-skutterudite compounds show rich properties metal-insulator transition, heavy fermion behavior,and superconductivity etc. (LaOs4Sb12,PrOs4Sb12, PrRu4Sb12etc.) ・PrOs4Sb12shows heavy-fermion-like behavior and anomalous superconductivity in many experiments. ・The related compounds, LaOs4Sb12,LaRu4Sb12and PrRu4Sb12 have been reported as conventional BCS superconductors. Metal-insulator transition : 金属-絶縁体転移 Heavy-fermion (HF) compound : 重い電子系化合物

  3. Outline Outline • Introduction - Filled-skutterudite structure - Crystal electric field - Nuclear Quadrupole Resonance technique • Experiments • Summary

  4. Introduction : Filled-skutterudite / Crystal structure Highertemperature Lower temperature rare earth transition metal pnictogen The cage made by a rare earth atom and 12 pnictogen atoms forms bcc-type crystal lattice Thermoelectric effect Crystal structure Application ・refrigerator ・waste heat recovery etc. Filled-skutterudite compounds show rich properties. ・metal-insulator transition ・heavy-fermion (HF) behavior ・superconducting (SC) transition Thermoelectric effect : 熱電効果

  5. Introduction : Crystal electric field Introduction : Crystal electric field L-S coupling : スピン-軌道相互作用 : orbital angular momentum : spin angular momentum Crystal electric field : 結晶場 Interaction between electrons and ions. PrOs4Sb12 Crystal electric field effect L-S coupling J=6 (13) (111K , doublet) Pr3+-4f2 J=5 (11) (65K , triplet) J=4 (9) (6K , triplet) magnetic (0K , singlet) non-magnetic Very small split → Magnetic fluctuations Magnetic fluctuation : 磁気揺らぎ T.Hotta et al,Phys. Rev.Letter. 94 (2005) 067003

  6. Introduction : Filled-skutterudite compounds Introduction : Filled-skutterudite compounds / PrOs4Sb12 PrOs4Sb12 PrRu4Sb12 ? BCS TC=1.3K TC=1.85K LaOs4Sb12 LaRu4Sb12 BCS BCS TC=0.74K TC=3.58K PrOs4Sb12 ・zero resistivity ・Meissner effect ・Jump of specific heat ・ First Pr-based heavy-fermion superconductor E.D.Bauer et al,Phys. Rev. B 65 (2002) 100506

  7. Introduction : Nuclear Quadrupole Resonance Introduction : Nuclear Quadrupole Resonance e + Sb-NQR spectrum of PrOs4Sb12 ・123Sb(I=7/2) ・121Sb(I=5/2) 3νQ 2νQ 121Sb (123Sb) has 2 (3) NQR transitions. 2νQ νQ νQ Charge distribution is not spherical symmetry. Nuclear Quadrupole Resonance : 核四重極共鳴

  8. Experiments : Nuclear spin-lattice relaxation Energy T1 Nuclear spin-lattice relaxation 核スピン-格子緩和

  9. Experiments : Nuclear spin-lattice relaxation BCS superconductor : LaOs4Sb12 Normal state La

  10. Experiments : Nuclear spin-lattice relaxation BCS superconductor : LaOs4Sb12 SC state TC Coherence peak NMR can detect low energy excitation around the Fermi surface.

  11. Experiments :Gap structure of anisotropic rsuperconductor Experiments: Gap structure of anisotropic superconductors Observed in HF superconductors. Line-node Gap equation 1/T1∝T3 TC Point-node Gap equation 1/T1∝T5 G.-q.Zheng et al,PRL 86 4664(2001) Anisotropic superconductor : 異方的超伝導体

  12. Experiments : Spin-lattice-relaxation time T1 LaOs4Sb12 vs. PrOs4Sb12 LaOs4Sb12 ・Normal State →T1T: const. ・SC State → Coherence peak at TC and Exponential T dependence of 1/T1 Conventional BCS superconductor. LaOs4Sb12 PrOs4Sb12

  13. Experiments : Spin-lattice-relaxation time T1-2 CeCu2Si2 , CeIrIn5vs.PrOs4Sb12 Y.Kawasaki et al,PRB 66 (2002) 224502 IsotropicHF superconductor? CeIrIn5 CeCu2Si2 PrOs4Sb12 G.-q.Zheng et al,PRL 86 4664(2001) CeCu2Si2 , CeIrIn5 ・SC state 1/T1 is proportional to T3 →anisotropic HF superconductor

  14. Experiments : Spin-lattice-relaxation time T1-3 PrRu4Sb12 vs. PrOs4Sb12 TC PrOs4Sb12 M.Yogi et al, PRL 90 027001 (2003) T<<70K T>>70K H. Kotegawa et al, PRL 90 027001 (2003) T<<6K T>>6K magnetic TC=1.85K 70K magnetic 6K non-magnetic TC=1.3K non-magnetic : Electrons

  15. Results TC TC Crystal electric field plays an important role. PrOs4Sb12 PrRu4Sb12 PrOs4Sb12 isn’t a conventional BCS superconductor. Isotropic-HF super conductor BCS TC=1.3K TC=1.85K LaOs4Sb12 LaRu4Sb12 BCS BCS TC=0.74K TC=3.58K

  16. Summary Summary • From temperature dependence of nuclear-spin-relaxation time T1, PrOs4Sb12 is notconventional BCS superconductor but HF-like-isotropic superconductor. • Crystal electric field plays an important role in the superconductivity of PrOs4Sb12 .

More Related