620 likes | 867 Views
Water-Mediated Production of Thermoplastic Nanocomposites. J . Karger-Kocsis and Á. Kmetty Budapest University of Technology and Economics Department of Polymer Engineering E-Mail: karger@pt.bme.hu. Outline. Water-assisted melt compounding of thermoplastic nanocomposites :
E N D
Water-Mediated Production of Thermoplastic Nanocomposites J. Karger-Kocsis and Á. Kmetty Budapest University of Technology and Economics Department of Polymer Engineering E-Mail: karger@pt.bme.hu
Outline • Water-assisted melt compounding of thermoplastic nanocomposites : • Why, with which nanofiller, how, any other benefits? • Materials • Polymers, nanofillers • - Nanocomposite preparations: • Discontinuous, continuous • Liquid-assisted melt compounding: • Aims, realization, outlook
Nanocomposites’ promise Improved structural Novel functional properties at low filler content • Nanofillers (water swellable, dispersible): • Origin: natural, artificial • Appearance: spherical, platy, fibrous
Applications of Thermoplastic Nanocomposites automotive, food packaging and electronics automobile door panel (PP) seat backs (PP) center bridge (TPO) body side molding (TPO) electrical board packaging film for meat food packaging box Multi-layer bottles
Classification of Nanofillers – Agglomeration Tendency C.-W. Chiu, T.-K. Huang, Y.-C. Wang et al., Progr. Polym. Sci., 39 (2014), 443
Polymer/Clay Nanocomposites C.-W. Chiu, T.-K. Huang, Y.-C. Wang et al., Progr. Polym. Sci., 39 (2014), 443
Water-Mediated Melt Compounding • Benefits: • - no need for surface modification • no thermal decomposition of the surface modifier • - no/reduced health risk • dosage of „preformed” nanoparticles • - improved dipersion of the nanofillers • „blow-up phenomenon, cryoscopy, plasticization, in situ surface modification • others – combined effects: • nanoreinforcement/toughening (rubber latex) • gelatinization/nanoreinforcement (TPS)
Realization – Our Approach • Strategy • Fillers: • - Water swellable (Na-fluorohectorite, FH) • - Water dispersable (boehmite alumina) • Composites’ Production: • - Discontinuous manufacturing • Direct melt blending of polymer with the related filler • Latex-mediated predispersion of the fillers (being water swellable/ water dispersible) – “masterbatch” • - Continuous manufacturing
Water-Mediated Melt Compounding – Early Studies Polyamide/Clay: - clay (cation) intergallery expansion by hydration of the cations - polyamide (type) reduction of the melting temperature –cryoscopic effect (melt viscosity)
XRD Spectra of Na-MMT/Water Z.Z. Yu, G.-H.Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci. Phys., 43 (2005), 1100
XRD Spectra Fluorohectorite (FH)/Water S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci., 106, 2007, 248
High Pressure DSC for PA-6/Water – Cryoscopic Effect N. Fedullo, E. Sorlier, M. Sclavons et al., Progr. Org. Coat., 58 (2007), 87
PA-6/Na-MMT Nanocomposite by WA Melt Compounding- Feeding in the Compression Zone - N. Hasegawa, H. Okamoto, M. Kato, A. Usuki and N. Sato, Polymer, 44 (2003), 2933
PA-6/Na-MMT Nanocomposite by Traditional and WA Melt Compounding - Feeding in the Compression Zone - Further finding: No reagglomeration during follow-up processing(molding) N. Hasegawa, H. Okamoto, M. Kato, A. Usuki and N. Sato, Polymer, 44 (2003), 2933
XRD Spectra of PA-6/Na-MMT (95/5) Produced by WA Melt Compounding Z.Z. Yu, G.-H.Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci. Phys., 43 (2005), 1100
XRD Spectra of PA-6/Na-MMT (100/5) Produced by WA Melt Compounding H- water TA - organophilic intercalant E - epoxy Y. Li, Z. Guo, J. Yu, Macromol. Mater. Eng., 290 (2005), 649
Scheme of Na-MMT Dispersion in PA-6 during WA Melt Compounding N. Fedullo, E. Sorlier, M. Sclavons et al., Progr. Org. Coat., 58 (2007), 87
Mechanical Properties of PA-6 and PA-6/Na-MMT (95/5) Produced by WA Melt Compounding Z.Z. Yu, G.-H.Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci. Phys., 43 (2005), 1100
Polyether-block-amide (PEBA)/Water – Cryoscopic Effect F. Touchaleaume, J. Soulestin, M. Sclavons et al., Expr. Polym. Letters, 5 (2011), 1085
Polyether-block-amide (PEBA)/(Organo)Clay Nanocomposites by WA Melt Compounding F. Touchaleaume, J. Soulestin, M. Sclavons et al., Expr. Polym. Letters, 5 (2011), 1085
Polyether-block-amide (PEBA)/(Organo)Clay Nanocomposites by WA Melt Compounding Water as intercalating/exfoliating aid F. Touchaleaume, J. Soulestin, M. Sclavons et al., Expr. Polym. Letters, 5 (2011), 1085
PA-12/Halloysite – WA Melt CompoundingEffect of Water B. Lecouvet, M. Sclavons, S. Bourbigot, C. Bailly, Polym. Adv. Technol., 25 (2014), 137
PA-12/Halloysite (8 and 16 wt.%) Water-mediated Traditional 8 wt.% 16 wt.% B. Lecouvet, M. Sclavons, S. Bourbigot, C. Bailly, Polym. Adv. Technol., 25 (2014), 137
XRD Spectra of PP/PP-g-MA/Na-MMT/Intercalant (100-70)/(0-30)/5/(0-1) Systems – WA Melt Compounding Intercalant PP-g-MA+intercalant 70/30/5/0 100/0/5/0 100/0/5/0.25 70/30/5/0.25 100/0/5/1 70/30/5/1 M. Kato, M. Matsushita, K. Fukumori, Polym. Eng. Sci., 44 (2004), 1205
Flexural Properties of PP/PP-g-MA/Na-MMT/Intercalant (70)/(30)/5/(0-1) Systems – Effect of Intercalant’s Amount M. Kato, M. Matsushita, K. Fukumori, Polym. Eng. Sci., 44 (2004), 1205
Mechanisms of MMT Dispersion in WA Melt Compounding – Effects of Water, Couplant and Intercalant M. Kato, M. Matsushita, K. Fukumori, Polym. Eng. Sci., 44 (2004), 1205
Reaction between Coupling Agent and Organophilic Modifier of Clay - PP/Organoclay by WM Compounding PP-g-MA Clay intercalant D.D.J. Rousseaux, N. Sallem-Idrissi, A.-C. Baudouin et al., Polymer, 52 (2011), 443
PE/Na-MMT by WA Melt Compounding - Versions S.I.S. Shahabadi, H. Garmabi, Expr. Polym. Letters 6 (2012), 657
Tensile Properties of PET/Organoclay Nanocomposites Produced by WA Melt Compounding M. Dini, T. Mousavand, P.J. Carreau, M.R. Kamal, M.-T. Ton-That, Polym. Eng. Sci., 54 (2014), in press
MW Characteristics of PET/Organoclay Nanocomposites Produced – Traditional and WA Melt Compounding W: WA SSP: Solid state polymerization M. Dini, T. Mousavand, P.J. Carreau, M.R. Kamal, M.-T. Ton-That, Polym. Eng. Sci., 54 (2014), in press
Scheme of Organophil/Swelling Agent Modificationof Purified Clay D. Wolf, A. Fuchs, U. Wagenknecht et al., Eurofillers, Lyon, 1999, 106
Comparison of the Performance of Micro- and Nanocomposites Philosophy Materials’ selection: - Use an amorphous polymer (e.g. PS) to exclude effects of morphology changes - Use the same filler for micro- and nanocomposites to guarantee the comparability Testing: - Use low frequency tests (e.g. creep, fatigue) as “nanoeffects”, if any, turn out here more clearly
Dried masterbatch Tg (PS latex) > RT Aqueous FH slurry in PS latex Layered silicate (FH) + water Layered silicate Water Latex (PS) Dried latex/Layered silicate/Granulate Mixing drying Stirring + + Dried masterbatch + PS granules + Sample Preparation (Latex Compounding) Direct melt mixing Masterbatch method Hot press Laboratory kneader: T = 180 °C, n = 60 rpm, t = 6 min.
0.96 nm 1.22 nm Change in intergallery distance XRD Spectra of PS/FH Nanocomposites Produced by Various Methods Bragg’s equation • Hydration of exchangeable cations (Na+)
DMTA Traces of PS/FH Nanocomposites Produced by Various Methods S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci., 106, 2007, 248
Dispersion of the Fluorohectorite (FH) in PS - TEM FH content: 4.5 wt% Microcomposite Nanocomposite S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci., 106, 2007, 248
Creep Mastercurves for PS/Fluorohectorite (4.5 wt%) Micro-and Nanocomposites PS PS/FH traditional melt compounding PS/FH WA melt compounding S. Siengchin, J. Karger-Kocsis, Macromol. Rapid Commun.,27, 2006, 2090.
Tensile Mechanical Characteristics Polystyrene/Fluorohectorite (FH) and Polystyrene/Boehmite (P2)
Aqueous Dispersion (10 wt.%) of Boehmite Alumina - Sasol GmbH
Schematic Mechanism of Nanoboehmite Dispersion H2O mechanical energy extrusion H2O shear/ evaporation of H2O nanoparticles 50-500 nm primary agglomerates alumina powder particles • Deagglomerated alumina particles in water slurry • Desorption of water molecules
Direct Melt Compounding to Produce „Nanoreinforced“ Thermoplastics Twin-screw extruder ZSK 25 P8 (Werner & Pfleiderer GmbH) T (Z1) = 150°C T (Z2-Z9) = 190 °C n = 200 rpm (PS) Granules + Alumina particles 1 2 3 4 5 6 7 8 9 Conveying element Transition element Mixing element Kneading block Neutral kneading block Material characterization Injection molding Composite materials
Water-Mediated Method to Produce Nanoreinforced Thermoplastics Pump T (Z1) = 150°C T (Z2-Z9) = 190 °C n = 200 rpm (PS) Granules Vacuum degassing Injection of Suspension 1 2 3 4 5 6 7 8 9 Conveying element Transition element Mixing element Kneading block Neutral kneading block Sample designation: PS PS/11N7-80(3)=>(DM-CT) PS/11N7-80(3)=>(WM-CT) DM-CT: direct melt mixing continuous technique; WM-CT: water mediated continuous technique
Dispersion of Boehmite in PS (Macrophotographs) Filler content: 4.5 wt% Dispersed particle size in water ≈ 25 nm Microcomposite Nanocomposite S. Siengchin; J. Karger-Kocsis; R. Thomann, J. Appl. Polym. Sci., 2007, 105, 2963-2972.
Dispersion of the Filler Boehmite Alumina in PS (SEM,TEM) PS matrix Alumina content: 3 wt% Microcomposite (produced by DM-CT) Nanocomposite (produced by WM-CT)
Dynamic/Static Mechanical Characteristics • Reinforcing effect of alumina particles increased stiffness
Creep Results – Effects of Temperature Creep compliance at different temperatures: Deformation mechanisms T1 < T2 immobility mobility of amorphous chains
Charpy Impact Behavior of PS-based Composites • Incorporation of alumina particles: toughness is reduced
Rubber Toughening of Polymers Strategy: Improve the toughness of the nanocomposites at the same time: rubber particles of the latex may act as “tougheners” S. Wu, J. Appl. Polym. Sci., 35 (1988) 549
Water-Mediated Method to Produce Toughened and „Nanoreinforced“ Thermoplastics PU-Latex Pump Granules Injection of Latex/Suspension Vacuum degassing 1 2 3 4 5 6 7 8 9 Conveying element Transition element Mixing element Kneading block Neutral kneading block Sample designation: POM POM/PU(10) POM/11N7-80(3) POM/PU(10)/11N7-80(3) T (Z1) = 150°C T (Z2-Z9) = 190 °C n = 150 rpm (POM) S. Siengchin, J. Karger-Kocsis, R. Thomann, Expr. Polym. Letters, 2 (2008), 746
Dispersion of the Filler Boehmite and Toughening Rubber in POM (Prepared by WM-CT) POM matrix Alumina content: 3 wt% POM matrix PU content: 10 wt%