1 / 61

Water-Mediated Production of Thermoplastic Nanocomposites

Water-Mediated Production of Thermoplastic Nanocomposites. J . Karger-Kocsis and Á. Kmetty Budapest University of Technology and Economics Department of Polymer Engineering E-Mail: karger@pt.bme.hu. Outline. Water-assisted melt compounding of thermoplastic nanocomposites :

kiet
Download Presentation

Water-Mediated Production of Thermoplastic Nanocomposites

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Water-Mediated Production of Thermoplastic Nanocomposites J. Karger-Kocsis and Á. Kmetty Budapest University of Technology and Economics Department of Polymer Engineering E-Mail: karger@pt.bme.hu

  2. Outline • Water-assisted melt compounding of thermoplastic nanocomposites : • Why, with which nanofiller, how, any other benefits? • Materials • Polymers, nanofillers • - Nanocomposite preparations: • Discontinuous, continuous • Liquid-assisted melt compounding: • Aims, realization, outlook

  3. Nanocomposites’ promise Improved structural Novel functional properties at low filler content • Nanofillers (water swellable, dispersible): • Origin: natural, artificial • Appearance: spherical, platy, fibrous

  4. Applications of Thermoplastic Nanocomposites automotive, food packaging and electronics automobile door panel (PP) seat backs (PP) center bridge (TPO) body side molding (TPO) electrical board packaging film for meat food packaging box Multi-layer bottles

  5. Classification of Nanofillers – Agglomeration Tendency C.-W. Chiu, T.-K. Huang, Y.-C. Wang et al., Progr. Polym. Sci., 39 (2014), 443

  6. Polymer/Clay Nanocomposites C.-W. Chiu, T.-K. Huang, Y.-C. Wang et al., Progr. Polym. Sci., 39 (2014), 443

  7. Water-Mediated Melt Compounding • Benefits: • - no need for surface modification • no thermal decomposition of the surface modifier • - no/reduced health risk • dosage of „preformed” nanoparticles • - improved dipersion of the nanofillers • „blow-up phenomenon, cryoscopy, plasticization, in situ surface modification • others – combined effects: • nanoreinforcement/toughening (rubber latex) • gelatinization/nanoreinforcement (TPS)

  8. Realization – Our Approach • Strategy • Fillers: • - Water swellable (Na-fluorohectorite, FH) • - Water dispersable (boehmite alumina) • Composites’ Production: • - Discontinuous manufacturing • Direct melt blending of polymer with the related filler • Latex-mediated predispersion of the fillers (being water swellable/ water dispersible) – “masterbatch” • - Continuous manufacturing

  9. Water-Mediated Melt Compounding – Early Studies Polyamide/Clay: - clay (cation) intergallery expansion by hydration of the cations - polyamide (type) reduction of the melting temperature –cryoscopic effect (melt viscosity)

  10. XRD Spectra of Na-MMT/Water Z.Z. Yu, G.-H.Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci. Phys., 43 (2005), 1100

  11. XRD Spectra Fluorohectorite (FH)/Water S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci., 106, 2007, 248

  12. High Pressure DSC for PA-6/Water – Cryoscopic Effect N. Fedullo, E. Sorlier, M. Sclavons et al., Progr. Org. Coat., 58 (2007), 87

  13. PA-6/Na-MMT Nanocomposite by WA Melt Compounding- Feeding in the Compression Zone - N. Hasegawa, H. Okamoto, M. Kato, A. Usuki and N. Sato, Polymer, 44 (2003), 2933

  14. PA-6/Na-MMT Nanocomposite by Traditional and WA Melt Compounding - Feeding in the Compression Zone - Further finding: No reagglomeration during follow-up processing(molding) N. Hasegawa, H. Okamoto, M. Kato, A. Usuki and N. Sato, Polymer, 44 (2003), 2933

  15. XRD Spectra of PA-6/Na-MMT (95/5) Produced by WA Melt Compounding Z.Z. Yu, G.-H.Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci. Phys., 43 (2005), 1100

  16. XRD Spectra of PA-6/Na-MMT (100/5) Produced by WA Melt Compounding H- water TA - organophilic intercalant E - epoxy Y. Li, Z. Guo, J. Yu, Macromol. Mater. Eng., 290 (2005), 649

  17. Scheme of Na-MMT Dispersion in PA-6 during WA Melt Compounding N. Fedullo, E. Sorlier, M. Sclavons et al., Progr. Org. Coat., 58 (2007), 87

  18. Mechanical Properties of PA-6 and PA-6/Na-MMT (95/5) Produced by WA Melt Compounding Z.Z. Yu, G.-H.Hu, J. Varlet, A. Dasari, Y.-W. Mai, J. Polym. Sci. Phys., 43 (2005), 1100

  19. Polyether-block-amide (PEBA)/Water – Cryoscopic Effect F. Touchaleaume, J. Soulestin, M. Sclavons et al., Expr. Polym. Letters, 5 (2011), 1085

  20. Polyether-block-amide (PEBA)/(Organo)Clay Nanocomposites by WA Melt Compounding F. Touchaleaume, J. Soulestin, M. Sclavons et al., Expr. Polym. Letters, 5 (2011), 1085

  21. Polyether-block-amide (PEBA)/(Organo)Clay Nanocomposites by WA Melt Compounding Water as intercalating/exfoliating aid F. Touchaleaume, J. Soulestin, M. Sclavons et al., Expr. Polym. Letters, 5 (2011), 1085

  22. PA-12/Halloysite – WA Melt CompoundingEffect of Water B. Lecouvet, M. Sclavons, S. Bourbigot, C. Bailly, Polym. Adv. Technol., 25 (2014), 137

  23. PA-12/Halloysite (8 and 16 wt.%) Water-mediated Traditional 8 wt.% 16 wt.% B. Lecouvet, M. Sclavons, S. Bourbigot, C. Bailly, Polym. Adv. Technol., 25 (2014), 137

  24. XRD Spectra of PP/PP-g-MA/Na-MMT/Intercalant (100-70)/(0-30)/5/(0-1) Systems – WA Melt Compounding Intercalant PP-g-MA+intercalant 70/30/5/0 100/0/5/0 100/0/5/0.25 70/30/5/0.25 100/0/5/1 70/30/5/1 M. Kato, M. Matsushita, K. Fukumori, Polym. Eng. Sci., 44 (2004), 1205

  25. Flexural Properties of PP/PP-g-MA/Na-MMT/Intercalant (70)/(30)/5/(0-1) Systems – Effect of Intercalant’s Amount M. Kato, M. Matsushita, K. Fukumori, Polym. Eng. Sci., 44 (2004), 1205

  26. Mechanisms of MMT Dispersion in WA Melt Compounding – Effects of Water, Couplant and Intercalant M. Kato, M. Matsushita, K. Fukumori, Polym. Eng. Sci., 44 (2004), 1205

  27. Reaction between Coupling Agent and Organophilic Modifier of Clay - PP/Organoclay by WM Compounding PP-g-MA Clay intercalant D.D.J. Rousseaux, N. Sallem-Idrissi, A.-C. Baudouin et al., Polymer, 52 (2011), 443

  28. PE/Na-MMT by WA Melt Compounding - Versions S.I.S. Shahabadi, H. Garmabi, Expr. Polym. Letters 6 (2012), 657

  29. Tensile Properties of PET/Organoclay Nanocomposites Produced by WA Melt Compounding M. Dini, T. Mousavand, P.J. Carreau, M.R. Kamal, M.-T. Ton-That, Polym. Eng. Sci., 54 (2014), in press

  30. MW Characteristics of PET/Organoclay Nanocomposites Produced – Traditional and WA Melt Compounding W: WA SSP: Solid state polymerization M. Dini, T. Mousavand, P.J. Carreau, M.R. Kamal, M.-T. Ton-That, Polym. Eng. Sci., 54 (2014), in press

  31. Scheme of Organophil/Swelling Agent Modificationof Purified Clay D. Wolf, A. Fuchs, U. Wagenknecht et al., Eurofillers, Lyon, 1999, 106

  32. Comparison of the Performance of Micro- and Nanocomposites Philosophy Materials’ selection: - Use an amorphous polymer (e.g. PS) to exclude effects of morphology changes - Use the same filler for micro- and nanocomposites to guarantee the comparability Testing: - Use low frequency tests (e.g. creep, fatigue) as “nanoeffects”, if any, turn out here more clearly

  33. Dried masterbatch Tg (PS latex) > RT Aqueous FH slurry in PS latex Layered silicate (FH) + water Layered silicate Water Latex (PS) Dried latex/Layered silicate/Granulate Mixing drying Stirring + + Dried masterbatch + PS granules + Sample Preparation (Latex Compounding) Direct melt mixing Masterbatch method Hot press Laboratory kneader: T = 180 °C, n = 60 rpm, t = 6 min.

  34. 0.96 nm 1.22 nm Change in intergallery distance XRD Spectra of PS/FH Nanocomposites Produced by Various Methods Bragg’s equation • Hydration of exchangeable cations (Na+)

  35. DMTA Traces of PS/FH Nanocomposites Produced by Various Methods S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci., 106, 2007, 248

  36. Dispersion of the Fluorohectorite (FH) in PS - TEM FH content: 4.5 wt% Microcomposite Nanocomposite S. Siengchin, J. Karger-Kocsis, A.A. Apostolov, R. Thomann, J. Appl. Polym. Sci., 106, 2007, 248

  37. Creep Mastercurves for PS/Fluorohectorite (4.5 wt%) Micro-and Nanocomposites PS PS/FH traditional melt compounding PS/FH WA melt compounding S. Siengchin, J. Karger-Kocsis, Macromol. Rapid Commun.,27, 2006, 2090.

  38. Tensile Mechanical Characteristics Polystyrene/Fluorohectorite (FH) and Polystyrene/Boehmite (P2)

  39. Aqueous Dispersion (10 wt.%) of Boehmite Alumina - Sasol GmbH

  40. Schematic Mechanism of Nanoboehmite Dispersion H2O mechanical energy extrusion H2O shear/ evaporation of H2O nanoparticles 50-500 nm primary agglomerates alumina powder particles • Deagglomerated alumina particles in water slurry • Desorption of water molecules

  41. Direct Melt Compounding to Produce „Nanoreinforced“ Thermoplastics Twin-screw extruder ZSK 25 P8 (Werner & Pfleiderer GmbH) T (Z1) = 150°C T (Z2-Z9) = 190 °C n = 200 rpm (PS) Granules + Alumina particles 1 2 3 4 5 6 7 8 9 Conveying element Transition element Mixing element Kneading block Neutral kneading block Material characterization Injection molding Composite materials

  42. Water-Mediated Method to Produce Nanoreinforced Thermoplastics Pump T (Z1) = 150°C T (Z2-Z9) = 190 °C n = 200 rpm (PS) Granules Vacuum degassing Injection of Suspension 1 2 3 4 5 6 7 8 9 Conveying element Transition element Mixing element Kneading block Neutral kneading block Sample designation: PS PS/11N7-80(3)=>(DM-CT) PS/11N7-80(3)=>(WM-CT) DM-CT: direct melt mixing continuous technique; WM-CT: water mediated continuous technique

  43. Dispersion of Boehmite in PS (Macrophotographs) Filler content: 4.5 wt% Dispersed particle size in water ≈ 25 nm Microcomposite Nanocomposite S. Siengchin; J. Karger-Kocsis; R. Thomann, J. Appl. Polym. Sci., 2007, 105, 2963-2972.

  44. Dispersion of the Filler Boehmite Alumina in PS (SEM,TEM) PS matrix Alumina content: 3 wt% Microcomposite (produced by DM-CT) Nanocomposite (produced by WM-CT)

  45. Dynamic/Static Mechanical Characteristics • Reinforcing effect of alumina particles increased stiffness

  46. Creep Results – Effects of Temperature Creep compliance at different temperatures: Deformation mechanisms T1 < T2 immobility mobility of amorphous chains

  47. Charpy Impact Behavior of PS-based Composites • Incorporation of alumina particles: toughness is reduced

  48. Rubber Toughening of Polymers Strategy: Improve the toughness of the nanocomposites at the same time: rubber particles of the latex may act as “tougheners” S. Wu, J. Appl. Polym. Sci., 35 (1988) 549

  49. Water-Mediated Method to Produce Toughened and „Nanoreinforced“ Thermoplastics PU-Latex Pump Granules Injection of Latex/Suspension Vacuum degassing 1 2 3 4 5 6 7 8 9 Conveying element Transition element Mixing element Kneading block Neutral kneading block Sample designation: POM POM/PU(10) POM/11N7-80(3) POM/PU(10)/11N7-80(3) T (Z1) = 150°C T (Z2-Z9) = 190 °C n = 150 rpm (POM) S. Siengchin, J. Karger-Kocsis, R. Thomann, Expr. Polym. Letters, 2 (2008), 746

  50. Dispersion of the Filler Boehmite and Toughening Rubber in POM (Prepared by WM-CT) POM matrix Alumina content: 3 wt% POM matrix PU content: 10 wt%

More Related