160 likes | 320 Views
Negative Index/Refraction & Fabrication + Application. EE235 2 nd presentation May 4 th , 2009 Jun Rho. Cloaking & Invisible Man. Refraction & Snell’s law. Snell’s law. Total Internal Reflection. m. RHM. RHM. RHM. LHM. e < 0 m > 0. e > 0 m > 0. k. k. S. S.
E N D
Negative Index/Refraction & Fabrication + Application EE235 2nd presentation May 4th, 2009 Jun Rho
Refraction & Snell’s law Snell’s law Total Internal Reflection
m RHM RHM RHM LHM e < 0 m > 0 e > 0 m > 0 k k S S metals , ionic crystals most dielectrics e negative m materials no natural materials e < 0 m < 0 e > 0 m < 0 n1 n1 Snell’s Law n2 n2 (p = -1 for LHM) Negative Index Metamaterials Refractive Index • “Practical Applications” • SuperLens • HyperLens • Cloaking
Superlens: Principle Diffraction limit w/o superlens Diffraction limit w superlens X. Zhang et al, Vol. 308, pp 435-441, Nature Materials, 2008
Superlens: Experiment At wavelength = 365nm Resolution achieved about 60-90nm N. Fang et al, Vol. 308, pp1534-5376, Science, 2005
Superlens: Fabrication • Cr deposition on a quartz substrate • Focused Ion Beam (FIB) patterning • Planarization • PMMA spacer layer deposition • Ag layer deposition • Near field photolithography N. Fang et al, Vol. 308, pp1534-5376, Science, 2005
|H| 0.04 Wavelength: 405nm 0.02 45pairs 10nmAg/10nm Ta2O5(R1:100nm,R2:1000nm) Object: 50nm separation, 20nm opening 0 Hyperlens: Principle At wavelength = 365nm Diffraction limit w/o hyperlens Diffraction limit w/ hyperlens Images after hyperlens Theoretically, diffraction limit is overcame. (120m < 150nm) Experimental resolution limit? 22 pairs (R1: 400nm, R2: 1940nm)
Hyperlens: Experiment 130nm J. Liu et all, Vol. 315, p 1686, Science, 2007
Hyperlens: Fabrication 1. Cr deposition on the quartz surface 2. Focused Ion Beam (FIB) patterning. 3. HF (BOE) wet etching 4. Remove mask layer 5. Multilayer deposition of Ag and Al2O3 by E-beam evaporator. Finally, the last Cr layer deposition is followed
Superlens & Hyperlens Conventional lens Superlens (Near field) Superlens (Far field) Hyperlens X. Zhang et al, Vol. 308, pp 435-441, Nature Materials, 2008
H H k k E E Metamaterials: Principle & Fab. Negative Index (LHM) Negative Permeability (µ) Negative Permittivity (ε) Wire Grid Polarizer RLC Circuit S. Zhang, Opt. Exp., 2005 S. Zhang, PRL, 2005 J. Valentine et al, Nature, 2008
Cloaking: Fab. & Experiment J. Valentine et al, pp 1-5, Nature, 2008
Future steps • Superlens • More applications • Hyperlens • Overcoming diffraction limit in visible wavelength • Application to Bio-Engineering • Cloaking • Bulk-metamaterials characteristics • Manufacturing Issues