410 likes | 636 Views
NADCA - Die Materials Committee Meeting. DIE MATERIALS FOR CRITICAL APPLICATIONS. AND INCREASED PRODUCTION RATES. John F. Wallace David Schwam Quanyou Zhou Case Western Reserve University. Cleveland, OH - November 14, 2001. OUTLINE. 1. Shorter cycles - cooling curves in the biscuit.
E N D
NADCA - Die Materials Committee Meeting DIE MATERIALS FOR CRITICAL APPLICATIONS AND INCREASED PRODUCTION RATES John F. Wallace David Schwam Quanyou ZhouCase Western Reserve University Cleveland, OH - November 14, 2001
OUTLINE 1. Shorter cycles - cooling curves in the biscuit. 2. Evaluation of non-ferrous alloys. 3. Results of recently tested die steels.
INCREASING PRODUCTIVITY WITH SHORTER CYCLES • METHOD: • Utilize high thermal conductivity materials to extract heat faster from the large cross sections. EXPERIMENTAL • Shot blocks made of H13, Brush Alloy 3 (CuBe-based), • Brush MoldMax (CuBe-base), Brush MoldMax XL (copper-base) • CMW Anviloy (W), ALLVAC 718 (Ni-base), Nibryl (NiBe). • Record cooling curve of the biscuit. • Determine “Die Open” time for different shot block materials.
TH13-Open=28.6(s) TAnvilloy 1150-Open=23.5(s) TMold XL-Open=20.0(s) TCuBe-3C-Open=18.2(s) TMold Ma-Open=18.0(s)
H13 Anvilloy 3C CuBe
Effect of Shot Block Material on Cooling Time of Biscuit Die Open” time (@950oF)for Brush Alloy 3C is 18.2 sec. vs. 28.6 sec. for H13. This is a 36% reduction in cycle time.
LIST OF NON-FERROUS CANDIDATE MATERIALS Material C W Mo Fe Ni Ti Zr Cu Be Cr Nb Sn CMW- 90.00 4.00 2.00 4.00 Anviloy1150 Kulite-Kuldie 90.00 4.00 2.00 4.00 Allvac 718L 0.01 3.10 18.20 53.80 0.93 17.90 5.06 CSM-PM Mo 100 Brush-QMAX 0.20 Bal. 2.00 Copper Beryllium Brush-Nybril 360 Bal. 0.50 2.00 Nickel Beryllium Brush-Nybril-FX1 Bal. 0.50 12.50 1.00 Nickel Beryllium Brush NBCX Bal. 0.5 12.5 1.2 Nickel Beryllium Brush M220C 0.4 Bal. 2.00 Nickel Beryllium Brush ToughMet2 9.00 Bal. 6.00 Brush ToughMet3 15.00 Bal. 8.00
TOTAL CRACK AREA AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7") 600 1"X1"X7", WC7 ) 2 m 500 6 400 300 Total Crack Area (x 10 Brush Wrought Nybril 360/35Rc Brush Wrought Nybril FX/44Rc 200 Brush Cast Nybril 360-2/ 35Rc Brush Cast Nybril 360-1/34Rc Brush Cast Nybril FX/49Rc CMW Anviloy 1150/37Rc Bohler W303/Oi/45Rc Brush QMAX/24Rc CSM PM Mo/20Rc Kulite Kuldie/33Rc Bohler W100/44Rc P.G. H13/Oil/49Rc Kind RPU1/48Rc Kind TQ1/48Rc 100 0 Test Materials
AVERAGE MAXIMUM CRACK LENGTH AFTER 15,000 THERMAL FATIGUE CYCLES (1"x1"x7") 50 1"X1"X7", WC7 m) 45 m 40 35 30 25 Average Max Crack Length (x100 20 Allvac IN718/46Rc (Pitting Depth) Brush Wrought Nybril 360/35Rc Brush Wrought Nybril FX/44Rc Brush Cast Nybril 360-2/ 35Rc Brush Cast Nybril 360-1/34Rc Brush Cast Nybril FX/49Rc 15 CMW Anviloy 1150/37Rc Bohler W303/Oi/45Rc P.G. H13/Oil/49Rc Brush QMAX/24Rc Kulite Kuldie/33Rc CSM PM Mo/20Rc Bohler W100/44Rc Kind RPU1/48Rc Kind TQ1/48Rc 10 5 0 Test Materials
Soldering Damage at the Corners of Cu-Ni-Sn Thermal Fatigue Specimens 0.5” ToughMet 2 ToughMet 2 ToughMet 3 ToughMet 2
Thermal Fatigue Damage in NBCX-1 and M220C-1 Soldering Thermal Fatigue Cracks Thermal Fatigue Cracks Corner 0.5” M220C-1 NBCX-1
CORNER DAMAGE IN ALLVAC A-286 (Iron-based w/ca.25% Ni)
CermeTi - Titanium Metal Matrix Composite Composition: matrix Ti-6Al-4V + 10wt% TiC particles. Manufacturing: by PM at Dynamet, Burlington MA. Main application: Liner for shot sleeves. Advantages: Low thermal conductivity (5.9 W/mK that is ca. 25% of H13) Good resistance to soldering and dissolving in molten Al Good wear resistance (@40HRC)
AVERAGE MAXIMUM CRACK LENGTH OF CermeTi-C-10 vs. H13 80 70 60 50 Average Max Crack Length (x100mm) 40 CermeTi-C-10 H13/oil quench/50HRC 30 20 10 1"x1"x7", wC7 0 0 2500 5000 7500 10000 12500 15000 Thermal Cycles
TOTAL CRACK AREA OF ALLVAC WH38 AND H13 650 2"X2"X7", WC7 600 WH38 H13 550 500 450 400 WH38 / 50HRC 350 Total Crack Area (x106mm2) 300 250 200 H13 / OIL / 51HRC 150 100 50 0 5000 7500 10000 12500 15000 Thermal Cycles
AVERAGE MAXIMUM CRACK LENGTH OF ALLVAC WH38 AND H13 60 2"X2"X7", WC7 55 HW38 50 H13 45 40 WH38 / 50HRC Average Max Crack Length (x100mm) 35 30 25 H13/ OIL/ 51HRC 20 15 10 5 0 5000 7500 10000 12500 15000 Thermal Cycles
TOTAL CRACK AREA OF SCHMIDT H11 AND H13 200 2"X2"X7", WC7 H13 SCHMIDT/H11-ESR 150 SCHMIDT/H11-ESR/45HRC Total Crack Area (x 106mm2) 100 50 H13 / OIL / 51HRC 0 5000 7500 10000 12500 15000 Thermal Cycles
AVERAGE MAXIMUM CRACK LENGTH OF SCHMIDT H11 AND P.G. H13 20 H13 SCHMIDT/H11-ESR 15 SCHMIDT/H11-ESR/45HRC Average Max Crack Length (x100mm) 10 H13 / OIL/ 51HRC 5 2"X2"X7",WC7 0 5000 7500 10000 12500 15000 Thermal Cycles
TOTAL CRACK AREA OF BOHLER 302 AND P.G. H13 200 2"X2"X7", WC7 H13 BOHLER W302 150 Total Crack Area (x106mm2) W302/47HRC 100 50 H13 / OIL / 51HRC 0 5000 7500 10000 12500 15000 Thermal Cycles
AVERAGE MAXIMUM CRACK LENGTH OF BOHLER W302 AND P.G. H13 20 2"X2"X7", WC7 15 Average Max Crack Length (x100mm) W302/47HRC 10 5 H13 / OIL/ 51HRC 0 5000 7500 10000 12500 15000 Thermal Cycles
TOTAL CRACK AREA OF THYSSEN 2344 AND P.G. H13 200 2"X2"X7", WC7 150 Total Crack Area (x106mm2) H13 / OIL / 51HRC 100 50 THYSSEN 2344/45HRC 0 5000 7500 10000 12500 15000 Thermal Cycles
AVERAGE MAXIMUM CRACK LENGTH OF THYSSEN 2344(H13) AND P.G. H13 20 2"X2"X7", WC7 H13 2344 15 H13 / OIL/ 51HRC Average Max Crack Length (x100mm) 10 5 Thyssen 2344/47HRC 0 5000 7500 10000 12500 15000 Thermal Cycles
TOTAL CRACK AREA OF KIND H11 AND P.G. H13 300 2"X2"X7", WC7 250 200 KIND H11/47HRC Total Crack Area (x106mm2) 150 100 50 H13 / OIL / 51HRC 0 5000 7500 10000 12500 15000 Thermal Cycles
AVERAGE MAXIMUM CRACK LENGTH OF KIND H11 AND P.G. H13 25 2"X2"X7", WC7 20 KIND H11/47HRC 15 Average Max Crack Length (x100mm) 10 5 H13 / OIL/ 51HRC 0 5000 7500 10000 12500 15000 Thermal Cycles
AVERAGE MAXIMUM CRACK LENGTH OF KDA1 AND H13 18 16 m) KDA1 H13 m 14 H13 12 10 Average Max Crack Length (x100 8 6 KDA1 4 2 2"X2"X7", WC7 0 5000 7500 10000 12500 15000 Thermal Cycles