1 / 26

Lectures

Lectures. Livre du cours : Sections 2.1, 2.2, annexe 2.2 Volume recommandé: "Statistique et gestion en économie" Sections 2.1, 2.2. Les trois étapes du traitement des données statistiques: La synthèse des résultats à l’aide d’un tableau; La représentation graphique du phénomène étudié;

kineks
Download Presentation

Lectures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lectures • Livre du cours : • Sections 2.1, 2.2, annexe 2.2 • Volume recommandé: "Statistique et gestion en économie" • Sections 2.1, 2.2

  2. Les trois étapes du traitement des données statistiques: La synthèse des résultats à l’aide d’un tableau; La représentation graphique du phénomène étudié; Le calcul des mesures caractéristiques. Les statistiques descriptives

  3. Étape 1 : La présentation des données Les tableaux statistiques : • Distribution de fréquences absolues • Distribution de fréquences relatives • Distribution de fréquences relatives cumulées

  4. Étape 1 : La présentation des données(variable discrète) Notation : X: une variable statistique (caractère) xi : (modalités) valeurs possibles prises par la variable statistique X fi: le nombre d’unités (fréquence absolue) présentant la valeur xi fi /n : la fréquence relative de xi Fi: la fréquence cumulée des valeurs prises par la variable X qui sont inférieures ou égales à xi Fi/n: fréquence relative cumulée - c'est la proportion des valeurs prises par la variable X qui sont inférieures ou égales à xi n: taille de l'échantillon

  5. Étape 1 : La présentation des données (variable discrète) La distribution de fréquence d’une variable statistique X est une fonction qui, à chaque valeur xi de la variable, fait correspondre sa fréquence fi . De façon similaire on définit la distribution de fréquence relative.

  6. Exemple 1 (données non groupées) La clinique médicale MD a fait une étude sur tous ses dossiers de varicelle recensée cette année et on y a notamment enregistré le nombre de frères et sœurs de chacun des patients atteints de cette maladie contagieuse. On relève les données brutes suivantes : Posons X = la variable statistique représentant le nombre de frères et sœurs de chacun des patients atteints de cette maladie contagieuse. Calculer les fréquences et dessiner le diagramme en bâtons. 2 1 3 0 6 0 1 2 3 1 3 0 2 0 4 1 0 4 0 2 1 1 3 2 3 3 2 1 1 1 0 1 2 4 1 2 2 7 3 2 0 1 1 2 5 5 3 4 3 0 1 2 2 3 0 1 2 0 2 2 Voir chiffrier Excel: exemple 1: données non groupées (varicelle)

  7. Calcul des fréquences • n = 60 • 8 classes fi/n Fi/n fi xi

  8. Étape 2 : La représentation graphique Exemple 1 (pour valeurs quantitatives non groupées, ou données qualitatives, variable discrète)

  9. Insertion de graphique

  10. Utilitaire d'analyse

  11. Étape 1 : La présentation des données (valeurs groupées) Les données sont souvent groupées en classes lorsque la variable est continue ou que celle-ci peut prendre un grand nombre de valeurs différentes (même si cette variable est discrète). Pour construire une distribution de fréquence, de fréquence relative ou de fréquence relative cumulée, on doit d’abord déterminer le nombre de classes.

  12. Étape 1 : La présentation des données (valeurs groupées) Valeurs groupéesen classes Comment calculer le nombre de classes ? 1) 1 + 3,3 log10 n (règle de Sturges) 2)

  13. Étape 1 : La présentation des données (valeurs groupées) Pour obtenir des classes d’amplitude égale : Trouvons E (l’étendue): E=Valeur maximale - Valeur minimale Calculons l’amplitude: Amplitude=E/nombre de classes

  14. Exemple 2 - données groupées Pour les trois dernières années, le débit mensuel moyen d'une rivière, exprimé en milliers de mètres cubes par seconde, a été le suivant : 0,22 0,09 0,08 0,10 1,05 0,36 0,18 0,15 0,15 0,22 0,11 0,09 0,09 0,19 0,68 0,78 0,42 0,15 0,66 0,39 0,34 0,19 0,15 0,08 0,08 0,37 0,67 0,23 0,16 0,35 0,34 0,21 0,11 0,32 0,22 0,36 Voir chiffrier Excel: exemple 2: données groupées (Rivière)

  15. Étape 1 : La présentation des données Trouvons n le nombre de classes: n= =6 ou encore: 1 + 3,3 log n = 1+3,3 log 36= 6,1358 Trouvons E (l’étendue): E=1,05 - 0,08=0,97 Calculons l’amplitude: Amplitude=0,97/6=0,17 On choisit la limite de la dernière classe un peu plus élevée que 1,05, disons 1,06, et on construit les limites des classes précédentes à reculons, en soustrayant 0,17 à chaque fois

  16. Les classes • Les classes sont: (0,04-0,21] (0,21-0,38] (0,38-0,55] (0,55-0,72] (0,72-0,89] (0,89-1,06]

  17. Règle de 3 pour les données groupées (interpolation linéaire) • Lorsqu’on est en présence de données groupées la ième valeur d’une classe: Vi est: BI: limite inférieure de la classe qui contient Vi fVi: fréquence absolue de la classe contenant Vi C: amplitude de la classe

  18. Étape 2 : La représentation graphique Les représentations graphiques permettent de visualiser le résumé statistique que nous donne la distribution de fréquence, de fréquence relative et de fréquence relative cumulée.

  19. Étape 2 : La représentation graphique • Le diagramme en bâtons (en barres) pour les données non groupées • En abscisse: les valeurs de la variable discrète • En ordonnée: bâton de longueur proportionnelle à la fréquence de chaque variable • L’histogramme (pour les données groupées) • Rectangles juxtaposés dont chacune des bases est égale à l’intervalle de chaque classe, et dont la hauteur est telle que la surface soit proportionnelle à la fréquence de la classe correspondante • Le polygone de fréquences • Distribution des fréquences sous-forme de courbe • Ogive (polygone de fréquence relative cumulée)

  20. Étape 2 : La représentation graphique Exemple 1 - Diagramme en barres (en bâtons) Utiliser: Insertion/Graphique/Histogramme dans Excel

  21. Histogramme Nous avons déjà défini les classes

  22. Histogramme Les classes sont définies automatiquement par Excel

  23. Étape 2 : La représentation graphique Exemple 2 (pour valeurs groupées) - Histogramme et ogive Utiliser Outils/Utilitaire d’analyse/Histogramme dans Excel

  24. Étape 2 : La représentation graphique Exemple 2 (pour valeurs groupées ) - Polygone de fréquence doit commencer et se terminer à 0 Utiliser: Insertion/Graphique/Courbes dans Excel

  25. Polygone de fréquence dans Excel

More Related