511 likes | 799 Views
Define Objectives: Survey Design Data Acquisition Quality Control Removal of Cultural features, other noise, correction of positioning errors Levelling & Micro-Levelling Gridding Primary Geophysical Processing Secondary Geophysical Processing Imaging & Compression Modelling Visualisation.
E N D
Define Objectives: Survey Design • Data Acquisition • Quality Control • Removal of Cultural features, other noise, correction of positioning errors • Levelling & Micro-Levelling • Gridding • Primary Geophysical Processing • Secondary Geophysical Processing • Imaging & Compression • Modelling • Visualisation 4 Geophysical Processing
1 Course Outline Pracs 4 7 2 3 5 6
Flight Lines & Tie Lines 5m spacing along lines Flight lines 30 to 500m spacing Ties lines 3 OR 4 times flight line spacing
3.3 Processing Tasks • Quality Control • Flight Line Position Verification • Removal of Cultural Spikes • 3.4 Levelling & Micro-Levelling • 3.5 Gridding and stitching • Registration & Rectification • 3.6 Primary Geophysical Processing • Reduction to Pole (RTP) • First Vertical Derivative (1VD) • Automatic Gain Control (AGC) • Upward/downward continuation • Draping • Analytical Signal • Gravity (Bouger, Free Air…) • 3.7 Secondary Geophysical Processing • Euler Deconvolution • SPI • Wavelet Transforms • 3.8 Filtering • High Pass • Low Pass (Smoothing) • Directional including Sun Shading • 3.9 Visualisation & Compression • False Colour • Pseduocolour Imaging • Image Ratioing • Principal components
3.4 Decorrugation filtering Flight line trend
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3.5 Gridding data www.math.ucdavis.edu/~strohmer/ research/geo/geo.html
Stitch of many 1:100,000 sheets showing mis-matches at borders. Stitch mismatch
3.6 Primary Geophysical Processing: Reduction to the Pole (RTP) -60º -90º (magnetic South Pole)
TMI: Total Magnetic Intensity TMI vs 1VD 1VD: 1st Vertical Derivative =dM/dZ At magnetic pole TMI TMI 1VD
Automatic Gain Control Filter (AGC) n = window size of filter
TMI TMI RTP AutomaticGainControl(AGC) TMI RTP 1VD TMI RTP 1VD AGC
Upward/Downward Continuation 200 m 1000 m gravity magnetics
Upward continuation of Arabian Shield & Peninsula 300m Upward continued to 10km
3.7 Secondary Geophysical ProcessingAnalytic Signal The analytic signal A of a potential field F is A(x,y,z) = i dF/dx + j dF/dy + k dF/dz, where i,j,k are unit vectors in the x,y,z directions. The analytic signal amplitude (also called the envelope) is |A| = |[(dF/dx)2 + (dF/dy)2 + (dF/dz)2]1/2 | TMI Analytic Signal Amplitude of TMI Often used at low latitudes where RTP transforms are unstable, as it gives a maximum over the center of a symmetric body
3.7 Secondary Geophysical Processing: Naudy, Euler & Phillips source parameter inversion
Euler Deconvolution window
Testing Euler Algorithm Depth 0m 500m Noddy Block Model Euler solutions, depth =100m N =1 Harris et al 1996
Comparison Unconformity Spatially averaged Euler Solutions Unconformity TMI
Vector Components of Gravity & Magnetic Fields Anomalous Component of Total Field X Component of Total Field Y Component of Total Field Z Component of Total Field Inclination -90º
Wavelet Transforms: Boschetti & Hornby (CSIRO) Upward continued profiles Horizontal derivative and wavelet transform gravity
USA Gravity Wavelet transform image of USA gravity image (Hornby et al 1998)
3.8 Visualisation • 120 million rods • Sensitive to grey scale contrast, not absolute levels • 6 to 7 million cones • Sensitive to absolute colour variation
Colour Display Gray Scale LUT Rainbow LUT Contours
3.10 Filters and colouring • The human eye has wide dynamic range in colour (>10,000 levels) • It is highly sensitive to edges in gray scale (but with a low dynamic range ~32 levels) • Therefore: • if we want to see absolute intensity variations, use colour • if we want to see fine detail, use black and white (and use a high-pass filter)
Directional Filtering (High Pass Filter) Original Image Horizontal Edge Detection Vertical Edge Detection
Normal Colour Coded Topographic Image Sun Shading Simulated Sun Shading from 240/80 “Sun”
TMI TMI 1VD TMI 1VD NW Shade TMI 1VD AGC
Compression Typically can achieve 25:1 compression with minimal loss of information MrSID and ECW systems dominate (both wavelet based) Landsat Orthorectified (7-4-2) UTM Zone Mosaics compresses as MrSID Images http://zulu.ssc.nasa.gov/mrsid/mrsid.pl
100 km 1 km Compression of Eire Raw: 986 Mb Compressed:21Mb ~47x compression c.f. http://www.ixoa.org/