1 / 14

Towards the limits of conventionnal MOSFETs

1 CEA-DRT – LETI/DTS – CEA/GRE, Grenoble, France. 2 CEA-DSM – DRFMC – CEA/GRE, Grenoble, France. 3 IMEP, Grenoble, France. Towards the limits of conventionnal MOSFETs. G. BERTRAND 1 , S. DELEONIBUS 1 , B PREVITALI 1 , G. GUEGAN 1 , X. JEHL 2 , M. SANQUER 2 , F. BALESTRA 3. OUTLINE.

korene
Download Presentation

Towards the limits of conventionnal MOSFETs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1CEA-DRT – LETI/DTS – CEA/GRE, Grenoble, France 2CEA-DSM – DRFMC – CEA/GRE, Grenoble, France 3 IMEP, Grenoble, France Towards the limits ofconventionnal MOSFETs G. BERTRAND1, S. DELEONIBUS1, B PREVITALI1,G. GUEGAN1, X. JEHL2, M. SANQUER2, F. BALESTRA3 ULIS 2003 Udine 20-21/03/03

  2. OUTLINE • CMOS challenges • Device fabrication • Limits in terms of • Short Channel effects • Performances • Transport • Charge : from CMOS to SET-MOS • Conclusion ULIS 2003 Udine 20-21/03/03

  3. CMOS challenges Possibilities of Conventional MOSFET? ULIS 2003 Udine 20-21/03/03

  4. Device fabrication • Conventional MOSFET architecture- 1.2nm SiO2 gate oxide - In situ doped polysilicon Gate - Channel : non intentionnaly adjusted but Super Halo SH :(only BF2 halos) or Non super Halo NSH : (B II + BF2 halos) - As extensions - 30nm nitride spacers - As HDD Source and drain - RTP spike anneal 1050°C Gate length down to 16nm ULIS 2003 Udine 20-21/03/03

  5. Limits : short channel effects (SCE) Electrical characteristics V =1.5V -3 10 d V =50mV d -5 10 Lot 6893 P18B • Field Effect transistor down to Lg=16nm Channel : B 5keV (A) 14 -2 LDD 1.5 10 cm -7 10 D I 13 -2 Halo 3.10 cm tilt 22° L = 29nm g -9 10 L = 16nm g -11 10 -0,5 0 0,5 1 1,5 W=10µm V (V) G ULIS 2003 Udine 20-21/03/03

  6. Limits : short channel effects (2) • Below 40nm, SCE not efficiently controlled whatever transistor architecture: • spacer length (30 to 40nm) • halo dose (1-4.1013cm-2) • LDD dose (0.8-2.1014cm-2) Large punchtrough current below 40nm Need for : - Thinner gate oxide - Improvement of halo efficiency ULIS 2003 Udine 20-21/03/03

  7. center channel doping - halo efficient doping- extension counter-doping : Rsd Limits : SCE (3) Halos efficiency Large B diffusion (TED+F) Halos : BF2 15-25keV ULIS 2003 Udine 20-21/03/03

  8. Limits : Ion/Ioff High Rsd : Low IonOptimum SCE + Ioff control Medium Rsd : High IoffOptimum Ion • Despite large Rsd (~1200 .µm), Ion up to 900 µA/µm • OptimumRsd / SCE trade-off hard to perform with such conventionnal architecture and technique ULIS 2003 Udine 20-21/03/03

  9. 0,8 Vd=Vg=1.5V Lg=45nm Vd=1.5V Vg=1V 7 50 1,5 10 Lg=70nm 0,7 vsat 40 0,6 With Rsd correction 7 1 10 r velocity (cm/s) B (%) 0,5 30 LDD1 Lg=60nm Without Rsd correction 6 5 10 0,4 LDD 1 Lg=30nm LDD 2 Lg=60nm 20 LDD2 Lg=30nm 0,3 100 200 300 0 100 200 300 Temperature (K) Temperature (K) Degradation of low field mobility by halosoverlap and high transverse field operation due to Limits : transport (1) • No velocity overshoot • Quasi ballistic transport : r with T but r~0.5-0.6 whatever Lg < 100nm ULIS 2003 Udine 20-21/03/03

  10. Limits : transport (2) • Impact at room temperature Low field mobility degradation due to halo overlapmostly in the case of efficient SCE control ULIS 2003 Udine 20-21/03/03

  11. gate Small W Large W source drain D S D S G G island = channel SingleElectronTransistor(S.E.T.)Representation periodicoscillations SET Aperiodicoscillations Limits: from CMOS to SET-MOS (1) • Lg CMOS SET ULIS 2003 Udine 20-21/03/03

  12. T=1.73K V =500µV L #30nm W=175nm d g Lot 8089 1E-9 1E-10 (A) d I 1E-11 1E-9 1,2 1E-12 0,4 0,6 0,8 1,0 1,2 1,4 1,6 V (V) g Limits: from CMOS to SET-MOS (2) > 50 oscillations @1.7K (0.5 to 1.4V) - Periodicity Related to Channel Geometry // F. Bœuf et al results [IEDM 2001]on non overlap Gate/Extension structure Importance of Rsd in Coulomboscillation observation ULIS 2003 Udine 20-21/03/03

  13. -5 10 Lg=20nm W=10µm -6 10 Vd=100µV T=75K Vd=300µV -7 10 Vd=500µV Drain Current (A) -8 10 -9 10 T=20K -10 10 -11 10 -0,4 -0,2 0 0,2 0,4 0,6 Vg Limits: from CMOS to SET-MOS (3) • Observable oscillations from 20K up to 75K àminimal gate length àhigh charging energy • Aperiodic oscillations • Large W (10µm) • Enable SET- MOS operating temperature closer to room temperature if W is reduced ULIS 2003 Udine 20-21/03/03

  14. Conclusions • Realization of conventional ultimate nMOSFET àfunctional devices physical gate length down to 16nm àelectrical characteristics with good performance • Limits :With conventional As extension + BF2 halos architecture : - difficult to control SCE below 40nm - limits low field mobility and non stationary transport Bulk : àNeed for thinner gate oxide (SCE control)àNeed for ultra steep halo profile (improved annealing process, B or In halo dopant instead of BF2, epitaxial SiCx diffusion barrier[VLSI 02]) Alternatives: low doped FDSOI, DGMOS. • From CMOS to SET-MOS - Conventional MOSFET could operate as SET at temperature below 4.2K - Promising results have been shown for 77K SET operation ULIS 2003 Udine 20-21/03/03

More Related