1 / 36

Mesure de la température du Plasma de Quarks et de Gluons

Mesure de la température du Plasma de Quarks et de Gluons. Au RHIC avec l’expérience PHENIX Plasma de Quarks et de Gluons Smoking guns Température. Plasma de Quarks et de Gluons. Déconfinement Collisions d’ions lourds Centralité. Plasma de Quarks et de Gluons. Le déconfinement

kort
Download Presentation

Mesure de la température du Plasma de Quarks et de Gluons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mesure de la température du Plasma de Quarks et de Gluons Au RHIC avec l’expérience PHENIX Plasma de Quarks et de Gluons Smoking guns Température Frédéric Fleuret - LLR

  2. Plasma de Quarks et de Gluons Déconfinement Collisions d’ions lourds Centralité Frédéric Fleuret - LLR

  3. Plasma de Quarks et de Gluons • Le déconfinement • Prédiction : à une densité (température) suffisamment élevée, une transition de phase devrait apparaître. • QCD sur réseau : Tc ~ 170 MeV PQG Nd.o.f = 37 (2 saveurs) Gaz de pions Nd.o.f = 3 F. Karsch et al. hep/lat 0106019 Frédéric Fleuret - LLR

  4. RX J185635-375 Plasma de Quarks et de Gluons • Le diagramme de phase Big Bang • haute temperature (1012 K) • 10-6 s. : Plasma  matière confinée Cœur des étoiles à neutron • Effondrement d’étoile • Grande densité de matière • (5 à 10 fois la densité nucléaire standard) • Matière confinée  plasma Frédéric Fleuret - LLR

  5. Plasma de Quarks et de Gluons • Expérimentalement : collisions d’ions lourds • Gros noyaux  volume + thermalisation • Grande énergie  densité critique Gaz de hadrons T ~ 140 MeV e ~ 0.05 GeV/fm3 Hadronisation T ~ 170 MeV e ~ 1 GeV/fm3 t ~ 10 fm/c P Q G T ~ 300 MeV e ~ 5 GeV/fm3 t~0.1 fm/c Phase de formation Collision d’ions T=0 MeV e = 0.15 GeV/fm3 Frédéric Fleuret - LLR

  6. Plasma de Quarks et de Gluons • Expérimentalement : collisions d’ions lourds BNL - AGS 4 GeV CERN - SPS 20 GeV Expériences Cibles fixes BNL - RHIC 200 GeV CERN - LHC 5.5 TeV Expériences collisionneurs Frédéric Fleuret - LLR

  7. Le RHIC • Deux programmes de recherche • Plasma de Quarks et de Gluons : ions lourds jusqu’à s = 200 GeV • Structure en spin du nucléon : protons polarisés jusqu’à s = 500 GeV • p+p  la référence • d+Au  étude des effets froids (shadowing, saturation,…) • Au+Au  étude des effets chauds (QGP) Frédéric Fleuret - LLR

  8. PHENIX & STAR • PHENIX • Central rapidity |y|<0.35 • Tracking (DC, PC) • EM calorimeter • TOF • RICH • Muon spectrometers 1.2<|y|<2.2 • Measureseverything • STAR • Large TPC • Silicon vertex tracker • EM calorimeter • Time of flight • Track ~2000 chargedparticles in |h|<1 Frédéric Fleuret - LLR

  9. 1000 Au+Au centrality b (fm) Npart Ncoll Ncoll 2,3 ± 0,9 353 ± 19 1091 ± 102 0-5% Spectateurs Spectateurs 20-25% 7,1 ± 0,5 181 ± 16 422 ± 65 b Participants Nombre de Collisions Participants 14,5 ± 0,3 4.1 ± 2.5 2.8 ± 2.2 90-95% 0 Npart 0 400 Centralité • Principe • Npart = nombre de nucléons participant • Ncoll = nombre de collisions nucléon-nucléon Petit paramètre d’impact b Grand paramètre d’impact Frédéric Fleuret - LLR

  10. Centralité • Mesure ZeroDegreeCalorimeter (z=±20m) BeamBeamCounter (z=±1.5 m) périphérique central périphérique Semi-central central Frédéric Fleuret - LLR

  11. y < 0 y = 0 y > 0 Densité d’énergie région centrale de rapidité région de fragmentation cible région de fragmentation projectile Phys. Rev. C71:034908 (2005) Frédéric Fleuret - LLR

  12. Smoking guns Au SPS : suppression du J/Y Au RHIC : le liquide parfait Frédéric Fleuret - LLR

  13. Smoking guns • Au SPS : suppression du J/Y Press release 10 février 2000 Frédéric Fleuret - LLR

  14. Smoking guns • Suppression du J/Y au RHIC Rapport de modification nucléaire si pas d’effets nucléaires, RAA = 1 • Suppression similaire à même rapidité • Interprétation difficile encore aujourd’hui. • Plusieurs possibilités : • Recombinaison • Suppression séquentielle • Contribution des effets froids • Intérêt de mesurer les quarkonia au LHC Frédéric Fleuret - LLR

  15. Smoking guns • Au RHIC : le liquide parfait • Jet quenching (opacité) • Flot elliptique (collectivité) Press release 18 avril 2005 Frédéric Fleuret - LLR

  16. medium-induced radiation Smoking guns • Au RHIC : jet quenching p+p pTtrig > 4 GeV/c 2 GeV/c <pTassoc < pTtrig Au+Au pTtrig > 4 GeV/c 2 GeV/c <pTassoc < pTtrig 1. Perte d’énergie dans le milieu 3. Où va l’énergie ? 2. Corrélations angulaires Au+Au pTtrig > 4 GeV/c 0.2 GeV/c <pTassoc < pTtrig DF = F(trig) – F(assoc) (Phys.Rev.Lett.91:072304,2003) Frédéric Fleuret - LLR

  17. Smoking guns • Au RHIC : jet quenching Rapport de modification nucléaire Pas d’effets nucléaires  RAA = 1 p + pp0 • Très forte suppression • Milieu très opaque • plus opaque qu’un gaz • un liquide Central Au + Aup0 Frédéric Fleuret - LLR

  18. y py x px y z x  Smoking guns • Au RHIC : flot elliptique • Dans un milieu fortement interagissant (thermalisé) • Anisotropie spatiale  anisotropie impulsionnelle(gradient de pression plus important dans le plan de réaction) Phys. Rev. Lett. 98, 162301 (2007) V2>0  flot dans le plan de réaction V2<0  flot hors du plan de réaction Frédéric Fleuret - LLR

  19. Smoking guns • Au RHIC : flot elliptique Phys. Rev. Lett. 98, 162301 (2007) Phys. Rev. Lett. 98, 162301 (2007) nq = nombre de quarks de valence v2 v2/nq pT  pT/nq KET  KET/nq V2 des hadrons V2 des quarks de valence Comportement universel des partons Comportement similaire des hadrons mouvement collectif Frédéric Fleuret - LLR

  20. Résumé • Au SPS : • Au RHIC : • Au RHIC : température ? Données reproduites par modèles hydrodynamiques (zéro viscosité) + cascade hadronique Frédéric Fleuret - LLR

  21. Température Mesure des photons thermiques Mesure des photons virtuels Frédéric Fleuret - LLR

  22. Température • Perfectliquid hot enough to be quark soup Press release Février 2010 (Phys.Rev.Lett.104:132301,2010) Hydro fits Tini ~ 300 – 600 MeV (kB ~ 8.6 10-5 eV K-1) T ~ 4 – 8 1012 K 300 MeV 600 MeV free Gas ? Perfectliquid 170 MeV Frédéric Fleuret - LLR

  23. g g Hadron Gas Température Time p p f p K • Comment mesurer la température ? • En mesurant les photons • Émission de radiation thermique • La température peut être mesurée avec les spectres d’émission freeze-out time g • Hard parton scattering • High pT photons (> 6 GeV) • QGP photons • LowpT photons (1 – 3 GeV) • Hadron gas photons • VerylowpT photons (<2 GeV) • Mesurer les photons • En p+p : obtenir la référence • En d+Au : effets froids • En Au+Au : obtenir la température expansion p quark-gluon plasma hard parton scattering Space Au Au Frédéric Fleuret - LLR

  24. Mesurer les photons • Dans les collisions A+A • High pT photons (pT>6 GeV) : non thermal • Initial parton-parton scattering: as in p+p • not affected by Hot and Dense Matter test the theoretical description of A+A collisions withpQCD • LowpT photons (pT < 3 GeV) : thermal • Come from the thermalized medium • Carry information about the initial temperature of the Quark Gluon Plasma • Thermal photons are created in the QGP as well as in the hadron gas over the entirelifetime of these phases  test hydro models • Low and intermediatepT (up to 6 GeV) • Interaction of the quarks and gluons from the hard scatteringprocesseswith the QGP • qhard + gQGP q + g • g get a large fraction of the momentum of qhard Frédéric Fleuret - LLR

  25. Photons directs : la référence • Collisions p+p • Direct photons • Compton scattering • q + g  q + g • qq annihilation • q + q  g + g • Bremsstrahlung (intial state) • Fragmentation photons • Brem. From final state partons • Final state hadron decay(background) • p0, h, K0,…  g + g p+p 200 GeV PRL98, 012002 (2007) Measured p+p yield compatible with NLO pQCDcalculations Frédéric Fleuret - LLR

  26. Les photons thermiques • La mesure direct photons are measured as « excess » above hadron decay photons background photons p0 from MC thermal From Monte Carlo : take a parametrization of measuredp0 as input and propagate the particlesthrough detectors background photons = remaining photons (fromp0) after all cuts thermal Direct photons candidates : obtainedafterrejecting photons pairs fallingwithin 110<Mgg<170 MeV/c² (p0) and 500<Mgg<620 Mev/c² (h) Direct photons candidates (from data) Difficult to measure below pT<3 GeV/c (the yield of thermal photons is only 1/10 of that of hadron decay photons) p0 from data Frédéric Fleuret - LLR

  27. Mesure alternative • Les photons virtuels « quasi réels » e- e+ • les sources de photons réelsdevraientaussipouvoirémettre des photons virtuels • à m0, la production des photons virtuelsest la mêmequecelle des photons réels • la production des photons réelspeutêtremésurée à partir des photons virtuels qui sontobservés à basse masse en e+e- • le BdFprovenant des désintégrations de hadrons peutêtrefortementréduit. • meilleurerésolution en énergie, identification, … Frédéric Fleuret - LLR

  28. Mesure alternative • Les photons virtuels « quasi réels » Source of real photon should also be able to emit virtual photon e- r,w J/Y Y’ e+ F DD • S(mee,pT) = dNg*(mee)/dNg • S= process (direct g, p0, h, …)dependent factor • Hadron dalitzdecay: Sh(mee)=0 for mee>mh • Direct photon : Sg(mee)  1 whenmee/pT0 (mee<<pT) (SeearXiv : 0912.0244 (appendix B) for more details) LMR I (Low Mass Region I) (Mee/pT0) pTee >> Mee « quasi real » photons Frédéric Fleuret - LLR

  29. Mesure des g* « quasi réels » • Mesurer les paires d’électrons Look at 100<Mee<300 MeV SeveralpTbins Remove (dalitz) p0 e+e- g  Mee > 135 MeV/c² Cocktail (p,h,w,r,..) fdir(Mee) = expectedshapefrom direct photon spectrum normalized to the data for mee<30 MeV/c² fc(Mee) = cocktail mass distribution normalized to mee<30 MeV/c² (Note : for mee<30 MeV/c² Sp°=Sg~1  identicalshape for fdir and fc) ftot=(1-r) fc(Mee) + r fdir(Mee) r = fraction of direct photons = direct/inclusive Frédéric Fleuret - LLR

  30. Mesure des g* « quasi réels » • Comparaison Au+Au et d+Au Au+Au d+Au • Fraction de photons directs : • rAuAu = 0.189 ±0.0213 • rdAu = 0.0247±0.0046 rAuAu ~ 10 x rdAu Frédéric Fleuret - LLR

  31. Fraction de photons directs p+p d+Au Au+Au • En fonction de pT • SeveralpTbins: • 1.0 < pT < 1.5 GeV/c • 1.5 < pT < 2.0 GeV/c • 2.0 < pT < 2.5 GeV/c • 2.5 < pT < 3.0 GeV/c • 3.0 < pT < 4.0 GeV/c • 4.0 < pT < 5.0 GeV/c • p+p consistent with NLO pQCD • d+Au : smallexcessabove NLO pQCD • Au+Au : large excessabove NLO pQCD NLO pQCDcalculations ×TdAu NLO pQCDcalculations ×TAuAu NLO pQCDcalculations TAA = glaubernuclearoverlapfunction Frédéric Fleuret - LLR

  32. Spectre des photons directs • Détermination du spectre Fraction de photons directs Photon yieldfromnormalized cocktail for mee < 30 MeV/c² to take S (the processdependent factor) intoaccount Normalized cocktail e+e- yield For mee < 30 MeV/c² Measured e+e- yield for mee < 30 MeV/c² Frédéric Fleuret - LLR

  33. Spectre des photons directs • Comparaisons p+p, d+Au, Au+Au • p+p : compatible with NLO pQCD calculation • d+Au : Hint of an enhancement, probably due to a nuclear effect • Au+Au : excess at low pT thermal photons p+p d+Au Au+Au Frédéric Fleuret - LLR

  34. Spectre des photons directs • Détermination de la température Fit = exponential + (MPLF×TAA) = + (MPLF×TAA) Exponential + MPLF on p+p × TAA (arXiv:0804.4168) Au+Au Min bias MPL Fit on p+p × TAA central mid Modified Power Law Fit on p+p p+p NLO pQCDcalculations Direct (real) photons in p+p Phys. Rev. Lett. 98, 012002 (2007) T = 221 ±19±19 MeV Direct (real) photons in Au+Au Phys. Rev. Lett. 94, 232301 (2005) Phys. Rev. Lett. 104, 132301 (2010) Frédéric Fleuret - LLR

  35. Températures • Modèles hydrodynamiques 300 MeV 600 MeV 170 MeV Perfectliquid From hydro models 300 MeV< Tini< 600 MeV 0.17 fm < t0 < 0.6 TAuAu(fit) ~ 220 MeV TC from Lattice QCD ~ 170 MeV Frédéric Fleuret - LLR

  36. Conclusion • Au RHIC • Résultats : liquide parfait • Jet quenching opacité • Flot elliptique  collectivité • Température  300 à 600 MeV • Futur (à partir de 2011) • Installation d’un détecteur de vertex • Accès à la physique des saveurs lourdes (open charm, open beauty) • Au LHC • Pb+Pb à 5,5 TeV Frédéric Fleuret - LLR

More Related