630 likes | 1.59k Views
Interatomic Potentials for Ionic Systems. Byeong-Joo Lee POSTECH-CMSE. Background. Importance of Ionic Materials Sensor, Battery, Devices, Metal Surfaces, etc. Need to handle “ionic + covalent + metallic” materials Interfacial Reaction between metals and SiO2 substrate
E N D
Interatomic Potentials for Ionic Systems Byeong-Joo Lee POSTECH-CMSE
Background • Importance of Ionic Materials • Sensor, Battery, Devices, Metal Surfaces, etc. • Need to handle “ionic + covalent + metallic” materials • Interfacial Reaction between metals and SiO2 substrate • Diffusion of metallic atoms in amorphous SiO2 • Atomistic simulation on “ionic + covalent + metallic” materials • ???
Purpose and Scope • Development of Interatomic Potential Model that covers • “ionic + covalent + metallic” materials, simultaneously. • Review interatomic potentials for ionic and hybrid materials • Propose possible form of an interatomic potential formalism
Outline • Interatomic Potential for Ionic Materials • Point Charge Model • Polarization (Shell Model) • Many-Body Potentials • Tersoff • EAM – MEAM – 2NN MEAM • Many-body potentials used for ionic systems • Many-Body Potentials for Ionic Materials • Charge Equilibration Model • EAM + Qeq • Tersoff + Qeq • Proposal of New Interatomic Potential Form
Interatomic Potential for Ionic Materials Fixed Point Charge Born-Mayer-Huggins TTAM BKS • Initially applied to liquid orglass, not crystals : probably, unable to reproduce crystal structures • 1st MD on SiO2 glass Woodcock [5], 1976 • More information available with upgraded measuring techniques for crystal structures and dynamics • 1988: BMH + many-body interaction to reproduce O-Si-O bonding angle: (cosθjik - cosθojik)2[6] • 1988: BMH + modified Coulomb interaction considering excess charge distribution in oxygen • + Ab Initio on SiO2 model clusters • → α-quartz, α-cristobalite, Coesite, Stishovite, for the first time → TTAM [7] • 1990: BMH + Ab Initio + Experimental Information onα-quartz • → better description than TTAM → BKS [8] • TTAM&BKS: representative Point Charge Potential for SiO2 during 1990s.(qSi = +2.4, qO = -1.2) • Limitation: use of Point Charge, pair-wise potentials not applicable to pure Si or Si/SiO2 • 1994: Jiang & Brown: SW Si – BKS SiO2, ionization energy, charge variation, bond-softening function • → behavior of O atom in Si [11] • 2010: Soulairol & Cleri: SW Si – BKS SiO2 + different q for interface
Interatomic Potential for Ionic Materials Fixed Point Charge + electronic polarization • Include dipole-charge, dipole-dipole interaction due to electronic polarization • Shell Model by Dick & Overhauser [13], 1958 • Ion = core electroncore + valence electron shell • Deviation of Center of mass of Shell causes adipole • Shell connected to core by an artificial spring and interact throughharmonic restoring force • Shell Model has been successful for diatomic molecule, alkali halidesand also for Al2O3 [14] • BMH + polarization : representative approach during 1980s for alkali halides, binary,mixed oxides [15] • Shell model: leading model for ionic materials in GULP [19] • 2002: Morse-Stretch pp + fixed point charge Coulomb + dipole polarization for Oxygen ions [17] • fitting (force-matching) on liquid SiO2 → better description for polymorphs than BKS • Limitation: not applicable to pure Si or Si/SiO2, not describing variable charge • Next Step: Many-body + variable charge
Many-Body Potential : EAM – 2NN MEAM • Embedding energy of impurity atoms is determined by the electron density of the host (from first-principles) • → individual atoms are impurity atoms → EAM concept [29,30] • How to compute F and Ф? No specific function form was given in initial EAM → reason for so many EAMs • Rose universal equation of state [23] gives a guide [31] • EAM : linear supposition for computation of electron density of a site → mainly for fcc • Introduction of bonding directionality → Modified EAM (1nn interaction only) • → applied to Si [32], bcc [33] and hcp [34], but stability problem • Need to consider 2NN interactions to solve critical shortcomings in MEAM → 2NN MEAM [36,37] • → applicable to both metallic and covalent systems: metals, carbides, nitrides, Si, Ge, etc.[38-40]
Many-Body Potential : Tersoff • 1985Abell : Close relation between Morse-typepair potential and Rose universal behavior • → replacement of Born-Mayer by Morse-Stretch • Tersoff potential [24-26] • bij : bond order – 1nn interaction, bond length and angle, effect of local environments, etc. • applied to C [27] and SiC [28] and extended to Brenner-REBO [87-89] • for alloys : arithmetic mean to λ,μ and geometric mean to A, B, R, S
Many-Body Potential for Ionic Materials • Umeno [14] : using Tersoff for SiO2 • Independent fitting to λ, μ, A, B instead of mean values • applicable to β-cristobalite, β-quartz which was difficult by BKS • Kuo [15] : using MEAM for SiO2 • applicable to α, β-quartz, α, β-cristobalite, β-tridymite
Charge Equilibration Model • 1991Rappe &Goddard [48] : based on previous concepts on electronegativity, equilibration [49-57]. • - equilibrium charge in molecules • consideringCoulomb interaction and penalty energy for charged isolated atoms (atomic self-energy) • IP &EA : ionization potential과 electron affinity • χ0 : electronegativity • J0:atomic hardness representing Coulomb repulsion between two electrons in an orbital • JAB:Coulomb interaction between A & B • computed by a Coulomb integral onatomic charge density expressed for aSlater-type orbital • Basic idea in Qeq model is to equalize the atomic chemical potential of all individual atoms(χ1 = χ2 = … = χN) • First applied to SiO2 in 1999 [58] : Morse-Stretch pair potential + charge equilibration • - Quartz-Stishovite phase transition& Silica glass • Swamy & Gale [59] in 2000 :Titanium oxide system • including rutile, anatase, brookite, TiO2-II, Ti2O3, monoclinic high- and low temp forms of Ti3O5, • TiO, ramsdellite-type TiO2, g-Ti3O5, two Magneli phases: Ti4O7 and Ti6O11
EAM + Charge Equilibration • 1994Streitz & Mintmire [60] : first Qeq approach for crystalline materials, EAM + Qeq for Al2O3 • 2004 Zhou [70] : solving charge stability problem, • - extened to multicomponent oxides, O-Al-Ni-Co-Fe system [71] • 2007 Lazic [74] : MEAM (different from Baskes) + Qeq, not much is published Oxidation of Al nano cluster[61,62]
Tersoff + Charge Equilibration • 1996 Yasukawa [76] : introduce atomic energy ΣiΦi& Coulomb energy ½ΣiΣjEIONij - effective point charge with cutoff functionin Coulomb potential, not with Ewald summation - Considering changes in ionic radius and short range interaction due to charge • Crack propagation behavior of SiO2 with or without H2O • Adhesion strength on Al,Cu/TiN,W,SiO2 thin film interface[77] • Upgrade in parameter [78] & Formalism for Coulomb interaction [79] • 2007 Sinnott & Phillpot group [80] : confirm application to α, β-quartz, α, β-cristobalite, but stability problem. • - atomic self-energy up to 4th order & introduction of bond-bending energy,(cosθOSiS - cosθoOSiO)2, • - COMB (Optimized Many-Body Potential), but cannot generate amorphous SiO2 & bad results for α-quartz • 2010modified version for SiO2 [81] : Slater 1s orbital type Coulomb integral &Ewald + anotherpenalty term • - applicable to α, β-quartz, α, β-cristobalite, β-tridymite, Coesite, Stishovite, generally worse thanTTAM • 2010 Hf/HfO2, Cu/Cu2O [83,84] : different bond-bending form depending on cation element
Others : ReaxFF • Bond-Order : based on correlation between bond order & bond distance or bond energy • describe bond dissociation → chemical reaction • - including bonding angle, torsion, charge equilibration, van der Waals interaction, etc. • - mainly for hydrocarbon system [85], but also to oxides, Si/SiO2 system [86] • Most powerful : covering Hydrocarbon system like Brenner-REBO [87-89] • and charge equilibration like COMB • Number of parameters for Carbon, for example : 90s • - how to determine the parameter values ? → 10 ~ 15 systems during up to now • - retirement of Prof. Goddard → Dr. van Duin @ Penn State
Summary Up to now no interatomic potential for ionic + covalent + metallic alloy systems
Potential for Ionic+Covalent+Metallic Materials • Charge Effect ? • Correct physics : easy parameterization and goodtrasferability • Point Charge vs. Charge Distribution ? • TTAM that considered charge distribution could describe the SiO2polymorphs for the first time • Shell Model ? • No publication for shell model + many-body potential • Variable charge can be superior to fixed charge, for bond dissociation, surface, interface, and other defects • Coulomb Integral ? • COMB10 [81] is generally worse than BKS or TTAM for SiO2 polymorphs • Coulomb intergral (COMB10 [81]) vs. effective point charge (Yasukawa 2010 [79]) ? • Summation of Long Range Potential (1/r radial behavior) ? • Ewald method[70], PPPM [75], direct summation method [82] • Charge Equilibration Method ? • Inverse matrix[60], Conjugate gradient method[70], Lagrangian dynamics[80] • Manybody Potential ? • - COMB had to change the functional form for bond-bending term, probably due to the limitation of Tersoff. • [Tersoff potentialhas never been applied to metallic alloy systems] • - MEAM is also a kind of bond order potential, • 2NN MEAM has been applied to both covalent and metallic alloy systems • Conclusion • 2NN MEAM + Qeq = Tersoff+Qeq +EAM+Qeq • Paying attention to charge stability and extension to multicomponent systems, • and searching for the best solution for Coulomb integral, long range potential and charge equilibraion
References B. J. Alder and T. E. Wainwright, ”Studies in Molecular Dynamics. I. General Method,” J. Chem. Phys. 31, 459 (1959). L. V. Woodcock, “Isothermal Molecular Dynamics Calculations for Liquid Salts,” Chem. Phys. Lett.10, 257 (1971). A. Rahman, R. H. Fowler and A. H. Narten, ”Structure and Motion in Liquid BeF2, LiBeF3, and LiF from Molecular Dynamics Calculations,” J. Chem. Phys. 57, 3010 (1972). L. V. Woodcock, Advances in Molten Salts Chemistry, Vol. 3 Chap. 1, pp.1-75, Plenum, New York (1975). L.V. Woodcock, C.A. Angell and P. Cheeseman, “Molecular Dynamics Studies of the Vitreous State: Simple Ionic Systems and Silica,” J. Chem. Phys. 65, 1565 (1976). B.P. Feuston and S.H. Garofalini, “Empirical Three-Body Potential for Vitreous Silica,” J. Chem. Phys. 89, 5818 (1988). S. Tsuneyuki, M. Tsukada, H. Aoki and Y. Matsui, “First-Principles Interatomic Potential of Silica Applied to Molecular Dynamics,” Phys. Rev. Lett. 61, 869 (1988). B.W.H. van Beest, G.J. Kramer and R.A. van Santen, “Force Fields for Silicas and Aluminophosphates Based on Ab Initio Calculations,” Phys. Rev. Lett. 64, 1955 (1990). C. R. A. Catlow and A.M. Stoneham, “Ionicity in Solids,” J. Phys. C: Solid State Phys. 16, 4321 (1983). J. R. Tessman, A. H. Kahn and W. Shockley, “Electronic Polarizabilities of Ions in Crystals,” Phys. Rev. 92, 890 (1953). Z. Jiang and R. A. Brown, “Modeling Oxygen Defects in Silicon Crystals using an Empirical Interatomic Potential,” Chem. Engin. Sci. 49, 2991 (1994). R. Soulairol and F. Cleri, “Interface Structure of Silicon Nanocrystals Embedded in an Amorphous Silica Matrix,” Solid State Sciences12, 163 (2010). B .G. Dick and A. W. Overhauser, “Theory of the Dielectric Constants of Alkali Halide Crystals,” Phys. Rev. 112, 90 (1958). G. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth and M. Samberg, “Shell-Model Calculation of Some Point-Defect Properties in α-Al2O3,” Phys. Rev. B11, 3060 (1975). G. V. Lewis and C. R. A. Catlow, “Potential Models for Ionic Oxides,” J. Phys. C: Solid State Phys. 18, 1149-1161 (1985). P. Vashishta, R. K. Kalia, J. P. Rino and I. Ebbsjö, “Interaction Potential for SiO2: A Molecular-Dynamics Study of Structural Correlations,” Phys. Rev. B41, 12197 (1990). P. Tangney and S. Scandolo, “An Ab Initio Parametrized Interatomic Force Field for Silica,” J. Chem. Phys. 117, 8898 (2002). D. Herzbach, K. Binder and M.H. Müser, “Comparison of Model Potentials for Molecular-Dynamics Simulations of Silica,” J. Chem. Phys. 123, 124711 (2005). J. D. Gale and A.L. Rohl, “The General Utility Lattice Program (GULP),” Mol. Simul.29, 291 (2003). J. H. Rose, F. Ferrante and J. R. Smith, “Universal Binding Energy Curves for Metals and Bimetallic Interfaces,” Phys. Rev. Lett. 47, 675 (1981). J. R. Smith, F. Ferrante and J. H. Rose, “Universal Binding-Energy Relation in Chemisorptions,” Phys. Rev. B25, 1419 (1982). J. H. Rose, F. Ferrante and J. R. Smith, “Universal features of bonding in metals,” Phys. Rev. B28, 1835 (1983). J. H. Rose, J. R. Smith, F. Guinea and F. Ferrante, “Universal Features of the Equation of State of Metals,” Phys. Rev. B29, 2963 (1984). J. Tersoff, “New Empirical Model for the Structural Properties of Silicon,” Phys. Rev. Lett. 56, 632 (1986) J. Tersoff, “New Empirical Approach for the Structure and Energy of Covalent Systems,” Phys. Rev. B37, 6991 (1988). J. Tersoff, “Empirical Interatomic Potential for silicon with improved elastic properties,” Phys. Rev. B38, 9902 (1988). J. Tersoff, “Empirical Interatomic Potential for Carbon with Applications to Amorphous Carbon,” Phys. Rev. Lett. 61, 2879 (1988). J. Tersoff, ”Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems,” Phys. Rev. B39, 5566 (1989). M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phys. Rev. Lett. 50, 1285 (1983). M. S. Daw and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B29, 6443 (1984). S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-Atom Method Functions for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt and Their Alloys,” Phys. Rev. B33, 7983 (1986). M. I. Baskes, J. S. Nelson and A. F. Wright, “Semiempirical Modified Embedded-Atom Potentials for Silicon and Germanium,” Phys. Rev. B40, 6085 (1989). M. I. Baskes, “Modified Embedded-Atom Method Potentials for Cubic Materials and Impurities,” Phys. Rev. B46, 2727 (1992). M. I. Baskes and R. A. Johnson, “Modified Embedded Atom Method Potentials for HCP Metals,” Modelling Simul. Mater. Sci. Eng. 2, 147 (1994). M. I. Baskes, “Determination of Modified Embedded Atom Method Parameters for Nickel,” Mater. Chem. Phys. 50, 152 (1997). B.-J. Lee, M. I. Baskes, “Second Nearest-Neighbor Modified Embedded-Atom Method Potential,” Phys. Rev. B62, 8564 (2000). B.-J. Lee, M. I. Baskes, H. Kim, Y. K. Cho, “Second Nearest-Neighbor Modified Embedded Atom Method Potentials for BCC Transition Metals,” Phys. Rev. B64, 184102 (2001). H.-K. Kim, W.-S. Jung, B.-J. Lee, “Modified Embedded-Atom Method Interatomic Potentials for the Nb-C, Nb-N, Fe-Nb-C and Fe-Nb-N systems,” J. Mater. Res. 25, 1288 (2010). B.-J. Lee, “A Semi-Empirical Atomistic Approach in Materials Research,” J. Phase Equilib. Diff.30, 509 (2009). B.-J. Lee, W.-S. Ko, H.-K. Kim, E.-H. Kim, “Overview: The modified embedded-atom method Interatomic Potentials and recent progress in atomistic Simulations,” CALPHAD34, 510 (2010). F. H. Stillinger and A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B 31, 5262 (1985). T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino and I. Ohdomari, “Novel Interatomic Potential Energy Function for Si, O Mixed Systems,” Jpn. J. Appl. Phys. 38, L366 (1999). T. Watanabe, D. Yamasaki, K. Tatsumura and I. Ohdomari, “Improved Interatomic Potential for stressed Si, O mixed systems,” Appl. Surf. Sci. 234, 207 (2004). Y. Umeno, T. Kitamura, K. Date, M. Hayashi, and T. Iwasaki, “Optimization of Interatomic Potential for Si/SiO2 system based on force matching,” Comput. Mater. Sci. 25, 447 (2002). S.R. Billeter, A. Curioni, D. Fischer and W. Andreoni, “Ab Initio Derived Augmented Tersoff Potential for Silicon Oxynitride Compounds and Their Interfaces with Silicon,” Phys. Rev. B73, 155329 (2006). M. I. Baskes, “Modified Embedded Atom Method Calculations of Interfaces,” Report number: SAND--96-8484C, Sandia National Laboratories, Livermore, 1996. C.-L. Kuo and P. Clancy, “Development of Atomistic MEAM Potentials for the Silicon–Oxygen–Gold Ternary System,” Modelling Simul. Mater. Sci. Eng. 13, 1309 (2005). A. K. Rappe and W. A. Goddard III, “Charge Equilibration for Molecular Dynamics Simulations,” J. Phys. Chem. 95, 3358 (1991). R. S. Mulliken, “A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities,” J. Chem. Phys. 2, 782 (1934). R. T. Sanderson, “Partial Charges on Atoms in Organic Compounds,” Science11, 207 (1955). L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, (1960). R. P. Iczkowsky and J. L. Margrave, “Electronegativity,” J. Am. Chem. Soc. 83, 3547 (1961). R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, “Electronegativity: The Density Functional Viewpoint,” J. Chem. Phys. 68, 3801 (1978). P. Politzer and H. Weinstein, “Some Relations between Electronic Distribution and Electronegativity,” J. Chem. Phys. 71, 4218 (1979). R. G. Parr and R. G. Pearson, “Absolute Hardness: Companion Parameter to Absolute Electronegativity,” J. Am. Chem. Soc. 105, 7512 (1983). W. J. Mortier, K. van Genechten and J. Gasteiger, “Electronegativity Equalization: Application and Parametrization,” J. Am. Chem. Soc. 107, 829 (1985). W. J. Mortier, S. K. Ghosh and S. Shankar, “Electronegativity-Equalization Method for the Calculation of Atomic Charges in Molecules”, J. Am. Chem. Soc. 108, 4315 (1986). E. Demiralp, T. Cagin and W.A. Goddard, “Morse Stretch Potential Charge Equilibrium Force Field for Ceramics: Application to the Quartz-Stishovite Phase Transition and to Silica Amorphous”, Phys. Rev. Lett. 82, 1708 (1999). V. Swamy, J. D. Gale, “Transferable Variable-Charge Interatomic Potential for Atomistic Simulation of Titanium Oxides”, Phys. Rev. B 62, 5406 (2000). F. H. Streitz and J. W. Mintmire, “Electrostatic Potentials for Metal-Oxide Surfaces and Interfaces,” Phys. Rev. B50, 11996 (1994). T. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata and S. Rodgers, “Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers,” Phys. Rev. Lett. 82, 4866 (1999). T. Campbell, G. Aral, S. Ogata, R. K. Kalia, A. Nakano and P. Vashishta, “Oxidation of aluminum Nanoclusters,” Phys. Rev. B 71, 205413 (2005). N. Rosen, “Calculation of Interaction between Atoms with s-Electrons,” Phys. Rev. 38, 255 (1931). C. C. J. Roothaan, “A Study of Two-Center Integrals Useful in Calculations on Molecular Structure. I,” J. Chem. Phys. 19, 1445 (1951). S. W. de Leeuw, J. W. Perram and E. R. Smith, “Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants,” Proc. R. Soc. London Ser. A373, 27 (1980). E. R. Smith, “Electrostatic Energy in Ionic Crystals,” Proc. R. Soc. London Ser. A375, 475 (1981). D. E. Parry, “The Electrostatic Potential in the Surface Region of an Ionic Crystal,” Surf. Sci. 49, 433 (1975). J. Hautman and M. L. Klein, “An Ewald Summation Method for Planar Surfaces and Interfaces,” Mol. Phys. 75, 379 (1992). D. M. Heyes, “Surface Stress of Point Charge Lattices,” Surf. Sci. Lett. 293, L857 (1993). X. W. Zhou, H. N. G. Wadley, J.-S. Filhol, M. N. Neurock, “Modified Charge Transfer–Embedded Atom Method Potential for Metal/Metal Oxide Systems,” Phys. Rev. B69, 035402 (2004). X. W. Zhou, H. N. G. Wadley, “A Charge Transfer Ionic–Embedded Atom Method Potential for the O–Al–Ni–Co–Fe System,” J. Phys.: Condens. Matter17, 3619 (2005). J. R. Smith, H. Schlosser, W. Leaf, J. Ferrante and J. H. Rose, “Connection between Energy Relations of Solids and Molecules,” Phys. Rev. A39, 514 (1989). J. Ferrante, H. Schlosser and J. H. Rose, “Global expression for representing diatomic Potential-energy curves,” Phys. Rev. A43, 3487 (1991). I. Lazic, M. Ernst, B. Thijsse, “Atomistic Simulation Methods for Studying Self Healing Mechanisms in Al/Al2O3,” Proceedings of the First International Conference on Self Healing Materials, 18-20 April 2007, Noordwijk aan Zee, The Netherlands R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981. A. Yasukawa, “Using an Extended Tersoff Interatomic Potential to Analyze the Static-Fatigue Strength of SiO2 under Atmospheric Influence,” JSME Int. J., Ser. A39, 313 (1996). T. Iwasaki and H. Miura, “Molecular dynamics analysis of adhesion strength of interfaces between thin films,” J. Mater. Res. 16, 1789 (2001). A. Yasukawa, in Japan Society of Mechanical Engineers, p.71, Sept. 19, 2003, Hitachi City, Ibaraki, Japan. A. Yasukawa, “Atomistic Simulation of Environment-Assisted Crack Propagation Behavior of SiO2, ” J. Solid Mech. Mater. Engin. 4, 599 (2010). J. Yu, S. B. Sinnott, S. R. Phillpot, “Charge optimized many-body Potential for the Si/SiO2 system,” Phys. Rev. B75, 085311 (2007) T.-R. Shan, B. D. Devine, M. Hawkins, A. Asthagiri, S. R. Phillpot and S. B. Sinnott, “Second-Generation Charge-Optimized Many-Body Potential for Si/SiO2 and amorphous Silica,” Phys. Rev. B82, 235302 (2010). D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, “Exact Method for the Simulation of Coulombic Systems by Spherically Truncated, Pairwise r-1 Summation,” J. Chem. Phys. 110, 8254 (1999). T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott and S. R. Phillpot, “Charge Optimized Many-Body Potential for the Hafnium/Hafnium Oxide System,” Phys. Rev. B81, 125328 (2010). B. D. Devine, T.-R. Shan, S. B. Sinnott, and S. R. Phillpot, “Charge Optimized Many-Body Potential for the Copper/Copper Oxide System,” 2011 (unpublished) A. C. T. van Duin, S. Dasgupta, F. Lorant and W. A. Goddard III, “ReaxFF: A Reactive Force Field for Hydrocarbons,” J. Phys. Chem. A105, 9396 (2001). A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu and W. A. Goddard III, “ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems,” J. Phys. Chem. A107, 3803 (2003). D. W. Brenner, ”Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films,” Phys. Rev. B42, 9458 (1990). S. J. Stuart, A. B. Tutein and J. A. Harrison, “A reactive Potential for Hydrocarbons with Intermolecular Interactions,” J. Chem. Phys. 112, 6472 (2000). D. W Brenner, O. A Shenderova, J. A Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) Potential energy expression for Hydrocarbons,” J. Phys.: Condens. Matter14, 783 (2002).
Atomistic Simulations- MEAM & Applications Byeong-Joo Lee Dept. of MSE Pohang University of Science and Technology (POSTECH) calphad@postech.ac.kr
Pair Potentials (~1980) ▷ Elastic Constants are NOT correctly reproduced Many Body Potentials (1980's) ▷ Embedded Atom Method (EAM: 1983) ▷ Finnis and Sinclair Potential (1984) ▷ Glue Model (1986) ▷ Equilivalent-Crystal Model (1987) Semi-Empirical Atomic Potentials - Historical Background
EAM Potentials (1983, M.S. Daw and M.I. Baskes) ▷ Successful mainly for FCC elements - many other many-body potentials show similar performance 1NN MEAM Potentials (1987,1992, M.I. Baskes) ▷ Show Possibility for description of various structures - important to be able to describe multi-component system 2NN MEAM Potentials (2000, B.-J. Lee & M.I. Baskes) ▷ Applicable to fcc, bcc, hcp, diamond structures and their alloys Semi-Empirical Atomic Potentials – History of Development
EAM/MEAM – General E : Total Potential Energy F : Embedding Energy : Electron Density (Considering Bonding Directionality) : Pair Interaction Energy
EAM/MEAM – Embedding Function M.I. Baskes et al., Phys. Rev. B, 40, 6085 (1989)
EAM/MEAM – Universal EOS J.H. Rose et al., Phys. Rev. B, 29, 2963 (1984)
EAM/MEAM – Electron Density for MEAM + Angular contribution
EAM/MEAM – Electron Density for MEAM + Angular contribution with ti(0) =1
1NN MEAM vs. 2NN MEAM –Many-Body Screening Xik=(Rik/Rij)2 and Xkj=(Rkj/Rij)2 Cmax Cmin j i fc(x) = 1 x 1 0 x 1 0x 0
Evaluation of MEAM Potential Parameters for Elements Ec, Re, B, A, d, (0), (1), (2), (3), t(1), t(2), t(3), Cmax, Cmin ▷ Cohesive Energy of Stable and Metastable Structure ▷ Nearest Neighbor Distance ▷ Bulk Modulus, Elastic Constants (C11, C12, C44) ▷ Stacking Fault Energy ▷ Vacancy Formation Energy ▷ Surface Energy
Elastic Constants ▷ B, C11, C12, C44, ... Defect Energy ▷ Surface Energy ▷ Heat of Vacancy Formation, … Structural Energy ▷ Energy and Lattice Parameters in Different Structures Thermal Property ▷ Specific Heat ▷ Thermal Expansion Coefficient ▷ Melting Temperature, ... Semi-Empirical Atomic Potentials - Performance
Elem. C11 C12 C44 E(100) E(110) E(111) Evf Ebcc/fcc Efcc/hcp Fe 2.430 1.380 1.219 2510 2356 2668 1.75 0.069 -0.023 2.431 1.381 1.219 2360* 1.79 0.082 -0.023 Cr 3.909 0.897 1.034 2300 2198 2501 1.91 0.070 -0.02 3.910 0.896 1.032 2200* 1.80 0.075 -0.029 Mo 4.649 1.655 1.088 3130 2885 3373 3.09 0.167 -0.038 4.647 1.615 1.089 2900* 3.10 0.158 -0.038 W 5.326 2.050 1.631 3900 3427 4341 3.95 0.263 -0.047 5.326 2.050 1.631 2990* 3.95 0.200 -0.047 V 2.323 1.194 0.460 2778 2636 2931 2.09 0.084 -0.011 2.324 1.194 0.460 2600* 2.10 0.078 -0.036 Nb 2.527 1.331 0.319 2715 2490 2923 2.75 0.176 -0.012 2.527 1.332 0.310 2300* 2.75 0.140 -0.036 Ta 2.664 1.581 0.875 3035 2778 3247 2.95 0.148 -0.023 2.663 1.582 0.874 2780* 2.95 0.166 -0.041 MEAM for BCC Transition Metals – B.-J. Lee et al., PRB, 2001
Elem. C11 C12 C44 E(100) E(110) E(111) Evf Ebcc/fcc Efcc/hcp ε(0-100oC) Cu 1.762 1.249 0.818 1382 1451 1185 1.11 -0.08 0.007 17.0 1.762 1.249 0.818 1770 1.03-1.30 -0.04 0.006 17.0 Ag 1.315 0.973 0.511 983 1010 842 0.94 -0.08 0.005 18.9 1.315 0.973 0.511 1320 1.1 -0.04 0.003 19.1 Au 2.015 1.697 0.454 1138 1179 928 0.90 -0.06 0.009 14.2 2.016 1.697 0.454 1540 0.9 -0.04 0.003 14.1 Ni 2.612 1.508 1.317 1943 2057 1606 1.51 -0.16 0.02 12.6 2.612 1.508 1.317 2240 1.6 -0.09 0.02 13.3 Pd 2.342 1.761 0.712 1743 1786 1435 1.50 -0.17 0.02 11.0 2.341 1.761 0.712 2043 1.4,1.7 -0.11 0.02 11.0 Pt 3.581 2.535 0.775 2288 2328 1710 1.50 -0.28 0.02 9.2 3.580 2.536 0.774 2691 1.35,1.5 -0.16 0.03 9.0 Al 1.143 0.619 0.316 848 948 629 0.68 -0.12 0.03 22.0 1.143 0.619 0.316 1085 0.68 -0.10 0.06 23.5 Pb 0.556 0.454 0.194 426 440 375 0.58 -0.04 0.003 30.1 0.555 0.454 0.194 534 0.58 -0.02 0.003 29.0 MEAM for FCC Transition Metals – B.-J. Lee et al., PRB, 2003
C11 C12 C44E(100)E(110)E(111)EvfEdia/fccEdia/hcpEdia/bcc ε (1012dyne/cm2) (erg/cm2) (eV) (eV) (0-100oC) 1.67 0.65 0.80 2631 1766 1442 3.67 0.57 0.55 0.52 2.65 1.68 0.65 0.80 1135* 3.3-4.3 0.57 0.55 0.53 2.69 MEAM for Silicon
2NN MEAM for Alloy Systems – Optimization of Potential Parameter, Fe-Pt
2NN MEAM for Fe-Cr Binary System – B.-J. Lee et al., CALPHAD, 2001 200K 850K 1000K
MEAM for Cu-Ni Binary System – B.-J. Lee and J.-H. Shim, CALPHAD, 2004
MEAM for Ni-Si Binary System Dilute Heat of Solution (eV/atom) Si in (Ni) -1.50 (-1.37) Ni in (Si) +0.50 Ni3Si 0.36 (0.36) 3.504 (3.504) 2.64 3.67 (3.63-3.75) 2.13 (2.00-2.05) 1.54 1.96 (1.67-1.72) 5.3 (7.2) NiSi2 0.28 (0.28) 5.391 (5.406) 1.93 (1.60) 2.39 1.69 0.70 (0.58) 0.32 8.0 Enthalpy of Formation (eV/atom) Lattice constant (Å) Bulk Modulus (100 GPa) C11 (100 GPa) C12 (100 GPa) C11-C12 (100 GPa) C44 (100 GPa) (100) fracture energy (J·m-2)
MEAM for Co-Pt Binary System - S.I. Park et al., Scripta Mater., 2001. Property Pt3Co PtCo PtCo3 Cohesive Energy 5.500 5.215 4.873 (eV/atom) 5.555±0.017 5.228±0.005 Lattice Constant a=3.833 3.754, c/a=.98 3.625 (Å) a=3.831 3.745, c/a=.98 3.668 Transition 1070-1080 970-980 760-770 Temperature (K) 1000 1100 840
MEAM for Ni-W Binary System –J.-H. Shim et al., J. Mater. Res., 2003 Property fcc (XW=0.11) Ni4W Cohesive Energy 4.922 5.36 (fcc, 5.27) (eV/atom) 4.925 5.40 Lattice Constant a=3.57 a=5.73, c=3.553 (Å) a=3.56 a=5.73, c=3.553
MEAM for Ni-W Binary System a (Å) c (Å) Ec(eV) B(Gpa) Ni4W (D1a) 5.73 3.553 5.36 292 5.733.5535.40293 Ni3W (L12) 3.62 - 5.58 319 3.58 - 5.65287 Ni3W (D019) 2.56 4.05 5.59 316 2.53 - 5.42289 NiW3 (L12) 3.86 - 7.29 316 3.84 - 7.55283 NiW3 (D019) 2.76 4.44 7.36 321 2.76 - 7.70304
Fe ▷ Finnis-Sinclair – modified by Calder and Bacon (1993) Fe-Cu ▷ Osetsky (1996) Fe: Pair-Potential, Osetsky (1995) Cu: Pair-Potential, Osetsky (1995) ▷ Ackland, Bacon, Calder (1997) Fe: F-S type, Ackland et al. (1997) Cu: F-S type, Ackland, Tichy, Vitek, Finnis (1987) ▷ Ludwig, Farkas,.. (1998) → C.S. Becquart, C. Domain, Fe: EAM, Simonelli, Pasianot, Savino(1993) Cu: EAM, Voter (1993) Empirical Potentials for Multicomponent Systems
History of Fe-C Alloy Potential • R.A. Johnson, G.J. Dienes, A.C. Damask, Acta Metall. 12, 1215 (1964). • metal-metal: pairwise interaction • metal-carbon: pairwise interaction • can consider only one carbon atoms, not applicable to carbides • V. Rosato, Acta Metall. 37, 2759 (1989). • metal-metal: many-body interaction • metal-carbon: pairwise interaction • can consider only one carbon atoms, not applicable to carbides • M. Ruda, D. Farkas, and J. Abriata, Scr. Mater. 46, 349 (2002). • metal-metal: many-body interaction (EAM) • metal-carbon: many-body interaction (EAM) • carbon-carbon: many-body interaction (EAM) • unacceptable results
History of Carbon Potential • J. Tersoff, Phys. Rev. Lett. 61 (1988) 2879. • structural properties (cohesive energies, bond lengths of various polytypes) • elastic properties (elastic constants of diamond) • point defect properties (vacancy formation and migration energies, • and interstitial formation energies in diamond and graphite) • applicable to monolayer of graphite • applicable to only Diamond Structures (C, Si, Ge, SiC, …) • D.W. Brenner, Phys. Rev. B 42 (1990) 9458; • J. Phys.: Condens. Matter 14 (2002) 783. • modification of Tersoff formalism to better describe hydrocarbons • M.I. Heggie, J. Phys.: Condens. Matter 3 (1991) 3065. • E.P. Andribet et al., Nucl. Instr. & Meth. in Phys. Res. B 115 (1996) 501. • To better describe graphite structure than Tersoff • Only for graphite
Fe, Cr, Mo, W, V, Nb, TaSecond Nearest-Neighbor Modified Embedded Atom Method Potentials for BCC Transition MetalsByeong-Joo Lee, M.I. Baskes, Hanchul Kim and Yang Koo Cho, Phys. Rev. B. 64, 184102 (2001). CA Modified Embedded Atom Method Interatomic Potential for CarbonByeong-Joo Lee and Jin Wook Lee, CALPHAD 29, 7-16 (2005). Fe-CA Modified Embedded Atom Method Interatomic Potential for the Fe-C System Byeong-Joo Lee, Acta Materialia 54, 701-711 (2006). Fe-NA Modified Embedded-Atom Method Interatomic Potential for the Fe-N System: A Comparative Study with the Fe-C system Byeong-Joo Lee, T-H Lee and S-J Kim, Acta Materialia 4597-4607 (2006). (2NN) MEAM for Fe, C, N, Fe-C and Fe-N systems
2NN MEAM for pure Fe- PRB 64, 184102 (2001); 71, 184205 (2005)