180 likes | 257 Views
GRB PRODUCTION & SN SIGNATURES IN SLOWLY ROTATING COLLAPSARS. NS & GRBs, Cairo & Alexandria, Egypt 3 rd of April, 2009. Diego Lopez-Camara Instituto de Astronom ía (UNAM), Mexico City. In collaboration with William Lee & Enrico Ramirez-Ruiz. (Lopez-Camara et al., 2009 ApJ).
E N D
GRB PRODUCTION & SN SIGNATURES IN SLOWLY ROTATING COLLAPSARS. NS & GRBs, Cairo & Alexandria, Egypt 3rd of April, 2009. Diego Lopez-Camara Instituto de Astronomía (UNAM), Mexico City. In collaboration with William Lee & Enrico Ramirez-Ruiz (Lopez-Camara et al., 2009 ApJ)
GRB characteristics… GRB SN connection: • GRB980425 con SN1998bw (Galama et al., 1998) • XRF020903 (Soderberg et al., 2004) • GRB021211 con SN2002lt (Della Valle et al., 2003) • GRB030329 con SN2003dh (Stanek et al., 2003) • GRB031203 con SN2003lw(Malesani et al.,2004) • GRB050525A con SN2005nc(Della Valle et al., 2006a) • GRB060218 con SN2006aj (Campana et al., 2006). LGRBs Cosmological distances (Metzger, 1997) COLLAPSAR LLGRB ≈ 1049 erg s-1 - 1052 erg s-1 1 / 11
If J < Jcrit quasi-radial acretion onto the CO • If J ≥ Jcrit accretion disk is formed. …Accretion Jcrit = 2 rs c ~ 1016 cm2 s-1 (for a 1 MO BH) Previous studies have assumed J << Jcritor J >> Jcrit J ≈ Jcrit requires further investigation. 2 / 11
t = 0 t > 0 ? ? ? Rout Rout BH ? ? T(R) = Tcollapsar T(R) = ? ? ? ? W VR(R) = Vcollapsar VR(R) = ? r rcollapsar (R) = r (R) = ? J(R) = J(R)collapsar J(R) = ? more… Objective: To study the evolution, morphology, and energy output within the collapsar scenario using the best physics possible, in the J ≈ Jcrit limit. Mdot(t) = ? L(t) = ? BH Initial conditions: Woosley & Heger’s (2006) 1D pre-SN 16TI model for a rapidly rotating, 16MO WR star of low metallicity. 3 / 11
J(R) (cm2 s-1) J(R) (cm2 s-1) J(R) ≥ Jcrit J(R) < Jcrit J(R) > Jcrit J(R) ≈< Jcrit R (cm) R (cm) In order to understand the J effects… J(R,) = J(R) J() = J(R) sin2 Stellar rotation rate in pre-SN cores is not fully determined. It is important to determine under which conditions the progenitor can produce a LGRB. 4 / 11
1.8x108 1.4x108 1.0x108 0.6x108 0.2x108 1.2x109 1.0x109 0.8x109 0.6x109 0.4x109 0.2x109 Results… t = 0.2 s = 0.1 J(R) ≈< Jcrit J(R) ≥ Jcrit v v vmax= 8 x107 cm s-1 5 / 11
J(R) ≈< Jcrit J(R) ≥ Jcrit Equatorial profiles: t = 0.2 s = 0.1 Clear difference between both regimes!!! 6 / 11
ann . ann disp q cap . cap q Equatorial profiles: t = 0.2 s = 0.1 Energy emission? 7 / 11
How efficient was the neutrino cooling? t = 0.2 s = 0.1 J(R) ≥ Jcrit more… Isothermal Adiabatic 8 / 11
Luminosity… = 0.1 1053 J(R) ≥ Jcrit 1052 J(R) ≈< Jcrit 1051 1050 t(s) 0.40 0.30 0.35 0.00 0.05 0.10 0.15 0.20 0.25 Lgrb 1049 erg s-1 J ≥ Jcrit L 1052 erg s-1 • = 0.1% for e-e+ (Birkl et al., 2007) J ≈< Jcrit L 1051 erg s-1 Lgrb 1048 erg s-1 9 / 11
GRB - SN t = 0.2 s J(R) ≈< Jcrit J(R) ≥ Jcrit = 0.1 Winds expected in collapsar disks = viscous + + B(MacFadyen & Woosley, 1999) We inferred the expectednucleosynthesis of56Niin the wind outflows (Pruet et al., 2004) J(R) ≥ Jcrit substantial 56Ni synthesis. (1MO of 56Ni in 10s) GRB + SN J(R) ≈< Jcrit no56Ni synthesis. GRB w/o SN (GRB060505 ?) 10 / 11
Conclusions • Clear difference between J ≥ Jcritand J < Jcrit. • Flow properties lie between the isothermal and adiabatic regimes. • Good thermodynamics and neutrino treatment are necessary. • Even J ≈< Jcrit could power a low energetic GRB. • GRB SN connection… • J(R) ≥ Jcrit GRB + SN. • J(R) ≈< Jcrit GRB w/o SN 11 / 11
Isothermal Our case Adiabatic even more… J ~ Jcritis between the two regimes! (thus cooling can not be ignored) back…
…how efficient was the cooling? back… tcool / tdyn tcool >> tdyn cooling is inefficient. (but necesary)
“Best physics”… back… Good EOS Neutrino optical depth () “two stream approximation”. Neutrino cooling and heating. Variable electronic fraction (Ye). Self gravity (assuming sherical symetry). Turbulent viscosityShakura & Sunyaev´s recipe (1973). Relativistic effects Paczynski & Wiita´spotential (1980). EOS…
…EOS back… ideal gas of α + free nucleons (NSE) blackbody radiation (fully trapped) neutrino radiation relativistic e pairs (arbitrary degeneracy) cap qcap(Langanke & Martinez-Pinedo, 2001) ann qann(Itoh et al., 1996) ann Shapiro & Teukolski (1983)