1 / 13

B 8  and B 8 (3 N ) potentials derived from the SU 6 quark-model baryon-baryon interaction

B 8  and B 8 (3 N ) potentials derived from the SU 6 quark-model baryon-baryon interaction. Y. Fujiwara ( Kyoto) M. Kohno ( Kyushu Dental ) Y. Suzuki ( Niigata ) 1. Motivation and background 2. New folding method 3. n  RGM 4. k F dependence of  potentials and   s force

kyla-gordon
Download Presentation

B 8  and B 8 (3 N ) potentials derived from the SU 6 quark-model baryon-baryon interaction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. B8 and B8(3N)potentials derived from the SU6 quark-model baryon-baryon interaction Y. Fujiwara (Kyoto) M. Kohno(Kyushu Dental) Y. Suzuki (Niigata) 1. Motivation and background 2. New folding method 3. n RGM 4. kF dependence of  potentials and  sforce 5. Comparison of  and (3N) potentials 6.  and (3N) potentials 7. Summary

  2. Derive reliable B8, B8(3N) potentialsbased on the G-matrix calculations of the quark-model B8B8 interactions. Motivation • Quark-model B8B8 int. fss2, FSS : QMPACK homepage • http://qmpack.homelinux.com/~qmpack/index.php • G-matrix and 3-cluster Faddeev calculations of the s-shell • and p-shell hypernuclei : Prog. Part. Nucl. Phys. 58 (2007) 439 • Much interest to -hypernuclei (J-PARC day-1 exp’t) Background • B8B8 B8, B8(3N), … a new folding method • Cf.optical potential … S-wave, P-wave local potentials • parameterizations : off-shell property is assumed!  • Correct treatment of the c.m. motion in light nuclei • Optimal treatment of the G-matrix parameters • starting energy  , c.m. mom. K, Fermi mom. kF • Various exchange kernels in n RGM Improvement , (3N) clusters: simple (0s)4, (0s)3 h.o. wave functions with =0.257 fm-2, =0.18 fm-2(reproduce the rms radii) Only restriction Fujiwara, Kohno and Suzuki, Nucl Phys. A784 (2007) 161

  3. () B8 interaction by quark-model G-matrix  : “(0s)4” =0.257 fm-2 G (p, p’; K, , kF) B8 relative q’ k’=p’- p , q’=(p+p’)/2 incident q1 G (k’,q’; q1, q’) in total c. m.  - cluster folding kF=1.20 fm-1 k=k’ q1=qfor direct and knock-on V (k, q) VW (R, q) : Wigner transform k=pf - pi , q=(pf+pi)/2 V (pf , pi) U(R)=VW(R, (h2/2)(E-U(R)) Transcendental equation Lippmann-Schwinger equation Schrödinger equation EB ,  (E) EBW , W(E)

  4. “constant K, , kF” q1=0 q’=3/5 kF kF=1.20fm-1 n RGM by G-matrix of fss2 n scatt. phase shifts S1/2 P3/2 P1/2 exp

  5. kF dependence of  central potential central e= -H0 =k.e.+U(q1) +UN(q2) < 0 EB (MeV) -3.62 -4.54 -5.47 -3.18 -3.90 -4.81 = 0 0.70 0.50 exp (MeV) -3.12  0.02

  6. kF dependence of   s potential ULS (R) s no S-meson LS FSS onlyFB LS 1.07 with S-meson LS fss2 1.35

  7. (3.04 MeV) 2+ 2 Faddeev for 9Be Phys. Rev. C70, 024002, 0407002 (2004) (0) 92 keV 0+  + + 8Be  RGM kernel (MN3R) effective  pot. (SB u=0.98) exp’t -3.120.02 MeV 3067(3) keV 3026 keV 3/2+ +5He 5/2+ 3024(3) keV 2828 keV -6.620.04 MeV fitted 1/2+ calc. 9Be  s splitting byN LS Born kernel 198 keV (fss2 quark+), 137 keV (FSS) : 3  5 times too large Eexp(3/2+ - 5/2+) = 43  5 keV Akikawa, Tamura et al. (BNL E930) Phys. Rev. Let. 88, 082501 (2002)

  8. s splitting of9Beby2 Faddeev using quark-model G-matrix  LS Born kernel FSS (cont) reproduces E exp at kF=1.25 fm-1 ! P-wave N-N coupling by LS(-) is important. S-meson LS in fss2 is not favorable. (1P1 - 3P1)

  9. Zero-momentum  Wigner transform by quark-model G-matrix interaction FSS fss2 I=3/2 I=3/2 total total I=1/2 I=1/2 The Pauli repulsion of N(I=3/2) 3S1 is very strong.

  10. (3N): (0s)3 =0.18 -0.22 fm-2 (3N) potentials by quark-model G-matrix interaction ( 0+, T=1/2 channel) fss2 fss2 =0.18 fm-2 =0.22 fm-2 EB=-7.00 MeV EB=-5.91MeV consistent with4He (0+)resonance

  11. B8 (3N) bound-state energies unit: MeV EB= -4.6 MeV =7.9 MeV 3H 4H 4He 5He T. Nagae et al. Phys. Rev. Lett. 80, 1605 (1998) - 0.13 1+ 1+ - 0.99 - 1.24 0+ Exp 0+ - 2.04 - 3.12 - 2.39

  12. Zero-momentum  Wigner transform by quark-model G-matrix interaction FSS fss2 I=1 I=1 total total I=0 I=0 (3N) potentials are almost repulsive ! Some attraction in the surface region.

  13. (ESC04d is not supported) Summary B8, B8(3N) potentials are derived from the G-matrix interactions of fss2 and FSS kF=1.20 - 1.35 fm-1 =0.257 fm-2 () =0.18 fm-2 (3N) Quark-model baryon-baryon interaction can reproduce many experimental data of light s-shell hypernuclei 1)n RGM: reasonable LS splitting (fss2, FSS) 2)  and (3N) bound states (fss2) 3) verysmall ssplitting in9Beexcited states(FSS) 4) N (I=1/2 1S0), N (I=3/2 3S1) repulsion  repulsive s.p. and  potentials (fss2, FSS) 5)  potential is weakly attractive (fss2, FSS) (ESC04d is not supported) Future problems Further analysis ofB8, B8(3N)interactionsby the recent Energy-independent renormalized RGM kernelfor the quark-modelB8B8interactions

More Related