1 / 18

D. Konsta, H. Chepfer, J-L. Dufresne, S.Bony, G. Cesana

Une description statistique multi-variable des nuages au dessus de l’océan tropical à partir des observations de jour de l’A-train en haute résolution spatiale pour évaluer la paramétrisation des processus nuageuses dans les modèles climatiques. D. Konsta, H. Chepfer, J-L. Dufresne,

Download Presentation

D. Konsta, H. Chepfer, J-L. Dufresne, S.Bony, G. Cesana

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Une description statistique multi-variable des nuages au dessus de l’océan tropical à partir des observations de jour de l’A-train en haute résolution spatiale pour évaluer la paramétrisation des processus nuageuses dans les modèles climatiques. D. Konsta, H. Chepfer, J-L. Dufresne, S.Bony, G. Cesana Laboratoire de Météorologie Dynamique LMD Institut Pierre Simon Laplace IPSL, Paris Seminaire INTRO, 30 September 2010

  2. Evaluation of clouds in climate models Observations Climate Models LMDZ5LMDZ-New Physics Data processing (starting from level1) : Lidar CALIPSO (Cloud cover: 330m,Vertical structure: 30m) • Radiometer PARASOL (reflectance: 6km) • Radiometer MODIS (reflectance: 250m-500m-1km) COSP Simulator: - Subgrid cloud simulator-SCOPS- Lidar simulator- PARASOL simulator CFMIP-OBS: observational datasets consistent with the simulator CALIPSO – GOCCP PARASOL- reflectance in 1constant direction (θv=30°, φv=320°) Simulated Datasets CALIPSO-like PARASOL-like consistency

  3. Zonal Mean Cloud Fraction – monthly mean CALIPSO-GOCCP OBS LMDZ5+SIM LMDZ New Physics +SIM 0.3 0 Latitude LMDZ5 LMDZ New Physics • LMDZ5 • Overestimate: • High clouds Underestimate: • Tropical low/mid clouds • Congestus - Mid level mid lat LMDZ New Physics Better representation of clouds 0.3 Pressure (hPa) 0 Latitude

  4. Cloud Cover and Cloud Vertical Distribution in circulation regimes - Monthly mean Tropical ocean CF CALIPSO-GOCCP CF LMDZ5+SIM CF LMDZ new+SIM Pressure ω500 (hPa/day) ω500 (hPa/day) ω500 (hPa/day) • OBSERVATIONS: • Subsidence regimes → Strong presence of low stratiform clouds • Convective regimes → clouds at high troposphere • + mid level clouds LMDZ5: -underestimation of low level clouds -no mid level clouds -overestimation of high convective clouds • LMDZ New Physics: • representation of boundary layer clouds in all regimes • overestimation of mid level clouds in one single layer • fewer high clouds

  5. Clouds Optical depth (or Reflectance) 0.9 Radiometer PARASOL: directional reflectances, selection of one constant single direction (θv=30°, φs- φv=320°) Reflectance is a proxy of optical thickness Spherical Particles Non Spherical Particles Reflectance (for θs=30°) PARASOL Reflectance 1constant direction 0 0 50 Optical Thickness

  6. Cloud Cover and All Sky Reflectance – monthly mean ALL SKY REFLECTANCE LMDZ New Physics +parasol simulator PARASOL 1con.dir. OBS LMDZ5 +parasol simulator CLOUD FRACTION LMDZ New Physics +lidar simulator LMDZ5 +lidar simulator CALIPSO-GOCCP OBS Error compensations between Total Cloud Cover and Optical depth (vertically integrated value within the lat x lon grid box) → Need to evaluate the cloud parameterizations in climate models

  7. Cloud Cover and Cloud Optical Depth in circulation regimes - Monthly mean Tropical ocean CLOUDY REFLECTANCE CLOUD FRACTION LMDZ5+SIM OBS LMDZ new+SIM ω500 (hPa/day) ω500 (hPa/day) • Subsidence regimes: • strong underestimation of cloud fraction but strong overestimation of cloud optical depth (less from LMDZ New Physics) • Convective regimes: • underestimation of cloud cover and cloud optical depth • → Need to evaluate the cloud parameterizations in climate models

  8. To evaluate the cloud parameterizations in climate models: Monthly mean observations are not sufficient We need to use high resolution (spatial and temporal ) observations

  9. A case study: low tropical boundary layer clouds- high resolution obs - Reflectance MODIS 1km Reflectance MODIS 500m CALIPSO Level 1 Reflectance MODIS 250m Longitude Reflectance CALIPSO 125m CALIPSO-GOCCP CF MODIS 5km Altitude (km) CF PARASOL 18.5km CLOUDSAT Latitude 1 0.2 MODIS Cloud Fraction Latitude CALIPSO Reflectance Impact of the spatial resolution of the sensors Need a clean separation clear/cloudy Need colocated and simultaneous observations PARASOL 0 0

  10. A methodology: from the case study to global statistics using high spatial resolution data PDF All Sky Refl=0.04 =0.4 CDF 1-CF =0.6 1° Cloudy Refl=0.07 1° Clear Refl=0.02 Same methodology for simulator’s outputs • In each grid box (obs/mod): Cloud Fraction and Cloudy Refl Reflectance MODIS 250m

  11. Cloud Optical DepthEvaluation of the model at high resolution Tropical ocean Optical thickness (spherical particles and θs=30°) PDF 0 3.4 8.1 16.5 40.5 OBS- PARASOL LMDZ new+SIM LMDZ5+SIM 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 All SKy Reflectance Cloudy Reflectance → Overestimation of low values of All-Sky Reflectance and underestimation of high values. BUT for cloudy reflectance (no clear sky contribution): → More optically thick clouds and less optically thin clouds simulated. Corresponding CDF: 50% of the cloud: Obs optical depth = 2.6 Models cloud optical depth = 4.8

  12. OBSERVATIONS Tropical ocean Relationship between Cloud Cover and Cloud Optical Depth Obs daily All Sky Reflectance 0.6 Obs daily 0 Cloudy Reflectance → The relation between optical depth and Cloud Fraction changes with the scale of averaging changes in time (monthly.vs. daily) and in space (all sky .vs. cloudy) 0.6 Obs monthly 0 0 1 Cloud Fraction

  13. Tropical ocean Relationship between Cloud Cover and Cloud Optical Depth Obs daily LMDZ5 daily LMDZ new daily → Model has difficulties to reproduce the ‘instantaneous’ relationship => Here after, we use « High Resolution » : Cloudy Refl, Daily All Sky Reflectance 0.6 Obs daily LMDZ5 daily LMDZ new daily 0 Cloudy Reflectance 0.6 Obs monthly LMDZ5 monthly LMDZ new monthly 0 0 1 0 1 0 1 Cloud Fraction Cloud Fraction Cloud Fraction

  14. Relationship between Cloud Cover and Cloud Optical Depth for high and low tropical oceanic clouds Tropical ocean 1 OBS LMDZ5 LMDZ- new Cloudy Reflectance High clouds 0 1 OBS LMDZ5 LMDZ- new Cloudy Reflectance Low clouds 0 0 1 0 1 0 1 Cloud Fraction Cloud Fraction Cloud Fraction • Error compensation between optically thin high clouds and very thick boundary layer clouds • Underestimation of the Cloud Fraction

  15. Cloud Cover versus Vertical distribution versus Cloud Reflectance Tropical ocean OPTICALLY THIN CLOUDS OPTICALLY THICK CLOUDS LMDZ5+SIM OBS- PARASOL LMDZ new+SIM Pressure 0 0.6 0 0.6 Cloud Fraction (CF(p)/CFtot) Cloud Fraction (CF(p)/CFtot)

  16. Focus on low level boundary layer clouds: Relationship between the Cloud Top Pressure and the Cloudy Reflectance Tropical ocean OBSERVATIONS LMDZ5+SIM LMDZ new+SIM Ptop 0.05 0.3 0.2 0.9 0.2 0.9 Cloudy Reflectance Or Optical depth Cloudy Reflectance Cloudy Reflectance • OBS: The cloud optical depth increases with the cloud top altitude (and with the cloud cover) → the cloud grows vertically (and horizontally) • Difficulties of the model to reproduce the relationship

  17. Conclusions A statistical view of clouds with A-train observations: • simultaneous and independent observations of multiple cloud parameters at high resolution→ assess cloud process parameterization in climate models • the spatial resolution of different sensors and the temporal resolution of the statistical analysis are critical • study of cloud properties only (excluding ‘Clear sky’ contribution) • link between Cloud Cover, Vertical Structure and Cloud Optical Depth • low clouds: cloudy reflectance increase with the cloud top altitude • LMDZ model evaluation: • Error’s compensations between • - underestimation of low tropical clouds/ few medium clouds and overestimation of high clouds • underestimation of the total Cloud Cover and overestimation of the Cloud Optical Depth (mainly in regions of subsidence) • Optically thinner high clouds and optically thicker boundary layer clouds • Better representation of clouds from LMDZ New Physics • Perspectives: • Similar analysis based on “high resolution” A-train observations to evaluate other climate models • Analysis of the subgrid variability (observations and models)

  18. Thank you!

More Related