1 / 79

Charette Group - Literature Meeting January 31 st , 2011

Chemical Kinetics and Recent Applications of Calorimetry in Organic Chemistry and Process Development. William S. Bechara. Charette Group - Literature Meeting January 31 st , 2011. Atibaia , S.-P., Brazil  Laval, Qc, Canada. Atibaia. Brasil.

kylia
Download Presentation

Charette Group - Literature Meeting January 31 st , 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chemical Kinetics and Recent Applications of Calorimetry in Organic Chemistry and Process Development William S. Bechara Charette Group - Literature Meeting January 31st, 2011

  2. Atibaia, S.-P., Brazil  Laval, Qc, Canada Atibaia Brasil

  3. Atibaia, S.-P., Brazil  Laval, Qc, Canada Atibaia Laval Brasil  Laval Montreal

  4. Chemical Kinetics •  Reaction kinetics is the study of rates of chemical processes, reaction's mechanism, transition states and allows the construction of mathematical models that can describe the characteristics of a chemical reaction. •  A reaction rate is the amount of substance reacted or produced per unit time. Its how fast or slow a chemical reaction takes place. • The Reaction Rate is influenced by : • The nature of the reaction • (activation energy, enthalpy, etc) • Temperature • Concentration • Pressure • Order • Solvent, Catalyst • Stirring, Surface Area a) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, 3rd edition, Wiley, 322-404. b) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.c) Laidler, K. J. The World of Physical Chemistry1995, Oxford University, 562-678.

  5. Chemical Kinetics •  Reaction kinetics is the study of rates of chemical processes, reaction's mechanism, transition states and allows the construction of mathematical models that can describe the characteristics of a chemical reaction. •  A reaction rate is the amount of substance reacted or produced per unit time. Its how fast or slow a chemical reaction takes place. • The Reaction Rate is influenced by : • The nature of the reaction • (activation energy, enthalpy, etc) • Temperature • Concentration • Pressure • Order • Solvent, Catalyst • Stirring, Surface Area Heat a) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, 3rd edition, Wiley, 322-404. b) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.c) Laidler, K. J. The World of Physical Chemistry1995, Oxford University, 562-678.

  6. Chemical Kinetics •  Reaction kinetics is the study of rates of chemical processes, reaction's mechanism, transition states and allows the construction of mathematical models that can describe the characteristics of a chemical reaction. •  A reaction rate is the amount of substance reacted or produced per unit time. Its how fast or slow a chemical reaction takes place. • The Reaction Rate is influenced by : • The nature of the reaction • (activation energy, enthalpy, etc) • Temperature • Concentration • Pressure • Order • Solvent, Catalyst • Stirring, Surface Area Heat Calorimetry a) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, 3rd edition, Wiley, 322-404. b) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.c) Laidler, K. J. The World of Physical Chemistry1995, Oxford University, 562-678.

  7. Calorimetry... From Heat • Calorimetry :Calor (Latin) means Heat. • Heat : A form of energy associated with the motion of atoms or • molecules and capable of being transmitted. •  Adding heat to matter increases its speed and pressure. •  First defined by Joseph Black, a Scottish Physician. • Calorimetry is the science of measuring the heat exchange • of chemical reactions or physical changes. • The first Calorimeter was used in 1782-83 by • Antoine Lavoisier and Pierre-Simon Laplace. Joseph Black a) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, 3rd edition, Wiley, 322-404. b) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.c) Laidler, K. J. The World of Physical Chemistry1995, Oxford University, 562-678.

  8. Calorimetry • Indirect Calorimetry : calculates the heat that living organisms produce • from their production of CO2, nitrogen waste (ammonia or urea), • or from their consumption of O2. • Direct Calorimetry : measures the • heat of a organism (or a reaction) placed • directly inside the calorimeter. a) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, 3rd edition, Wiley, 322-404. b) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.c) Laidler, K. J. The World of Physical Chemistry1995, Oxford University, 562-678.

  9. Calorimeters • • Basic Calorimeter (Thermometer) • Measures the total heat of a reaction. • • Differential Scanning Calorimeter (Omnical SuperCRC) • Measures the total heat of a reaction versus time comparing it to the heat flow of a reference vessel.  Provides a more accurate heat flow of the reaction. • • Bomb Calorimeters • Measures the heat of combustion. • • Calvet-Type Calorimeter • Complex calorimeter used for large scale. • • Constant-Pressure Calorimeter • • Isothermal Titration Calorimeter • The heat of reaction is used to follow a titration experiment. a) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, 3rd edition, Wiley, 322-404. b) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.c) Laidler, K. J. The World of Physical Chemistry1995, Oxford University, 562-678.

  10. Differential Scanning Calorimeter - Super CRC • • Sample Compartment : All reagents, reactants, catalyst, additives, etc. • • Reference Compartment : All reagents except for starting material (product). a) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, 3rd edition, Wiley, 322-404. b) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.c) Laidler, K. J. The World of Physical Chemistry1995, Oxford University, 562-678. d) http://www.omnicaltech.com

  11. Omnical – SuperCRC • Small Scale Microcalorimeter Provides : • • Total heat released by chemical reaction. • • Reaction kinetics and thermodynamics. • • Heat capacity. • • Instantaneous concentrations of reactants/products • • Thermochemical conversion. • • Accurate representations of large scale reaction • processes in early phase development. • • Scalable heat release rate profile. • • Safety screening with potential hazardous events and non-scalable factors. • It accurately maps out chemical pathways prior to scale-up because it generates • scalable heat flow that matches real process reactions, saving both money & time. a) Omnical SuperCRC Users Guide. b) http://www.omnicaltech.com

  12. Omnical – SuperCRC • Reaction Calorimeter Specifications :  • • Temperature range from -100°C to +200°C. • • 1 microwatt sensitivity. • • Pressure reactors up to 1000 psi. • • 1400 rpm internal magnetic stirring. • • Visual observation through a borescope. • • Automated syringe pump dosing. • • Generates real kinetics that match other analytical instruments (GC/HPLC). a) Omnical SuperCRC Users Guide. b) http://www.omnicaltech.com

  13. Omnical – SuperCRC • Researcher Software WinCRC Turbo • The Software WinCRC Turbo collects raw data and convert them into reaction rates. Increase in concentration of products Time in which change takes place Rate of Reaction = the speed of a reaction a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) http://www.omnicaltech.com d) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. e) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  14. Differential Scanning Calorimeter - Super CRC • Software WinCRC Turbo + Physical Theories Course of reaction Heat Reaction Time • A reaction calorimeter is a calorimeter in which a chemical reaction is initiated • within a closed insulated container. Reaction heats (absorbed or emitted) are measured • and the heat flow is obtained by integrating heat versus time. a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) http://www.omnicaltech.com d) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. e) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  15. Raw Data to Corrected Curve – Tau Correction Tau Correction : Calibration performed by applying a known quantity of heat in the thermocouple, allowing for the response of the instrument to be corrected using the WinCRC software. The tau corrected data curve is a plot of heat flow (mJ s-1 or mW) versus time. a) Omnical SuperCRC Users Guide b) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc.2004, 126, 1360-1362, SI.

  16. Reaction Calorimetry a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) http://www.omnicaltech.com d) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. e) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  17. Reaction Rate and Physical Theories • - The data acquired from the Calorimeter is : •  Quantity of heat measured in energy units (Joules or calories) versus time. •  These data lead to the heat flow or heat rate (mJ s-1 or watts) . •  The heat rate is proportional to the reaction rate : q = ΔHrxn⋅ V ⋅ r Heat flow Reaction progress q ΔHrxn V r n v = reaction heat rate = heat of reaction (enthalpy) = the reaction volume = reaction rate = number of moles of limiting reagent = stoichiometric coefficient of the limiting reagent time a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  18. Conversion Analysis viaCalorimetry • Fraction conversion and instantaneous concentrations of reactants/products • can all be calculated with the ratio or corresponding integration.  area under the heat flow to any time point t  the total area under the heat flow curve Heat flow t = specific time point t0 = initial time of the reaction t f = final time of the reaction q = reaction heat rate n = number of moles of reagent t0 t tf a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  19. Reaction Order Versus Concentration aA + bB pP + qQ r k [X] x,y x+y t dt = reaction rate = reaction rate constant = concentration of reactant = order of reaction for each reactant = order of reaction = t = derivative versus time a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  20. First Order A P a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  21. First Order Concentration of a Reactant versus Time Rate of Reaction versus Reactant Concentration Ex. N2O5 2NO2 + ½ O2 a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  22. Second Order or a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  23. Second Order or Concentration of a Reactant versus Time Rate of Reaction versus Reactant Concentration Ex. 2CH3CHO  2CH4 + 2 CO a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  24. Pseudo First Order • r = k[A][B]  second order • If [B] : constant • • Catalyst (that does not degrade within the reaction time) • • In excess [B]>>[A] • r = k’[A] where k’ = k [B]0 r k [X] = reaction rate = reaction rate constant = concentration of reactant a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  25. Zero Order Concentration of a Reactant versus Time Rate of Reaction versus Reactant Concentration a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  26. Reaction Order - Summary a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Omnical SuperCRC Users Guide. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  27. Reaction Order - Summary mol·L -1·s-1 s-1 mol-1·L·s-1 mol1-n·Ln-1·s-1

  28. Catalyzed Reaction Kinetics Versus Concentration Michaelis-MentenLineweaver-Burk Derivation KM = Michaelis constant (M) = affinity of substrate to catalyst (enzyme). The higher the KM, the lower the affinity V = current reaction rate (M min-1) V max = maximum reaction rate (M min-1) a) Atkins, P.; De Paula, J. Physical Chemistry2003, 7thedition, 30-72, 862-943.b) Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry 2008, Wiley, 322-404. c) Jacobsen, E. N. et al. J. Am. Chem. Soc.2004, 126, 1360-1362, SI. d) Buchwald, S. L. et al.J. Am. Chem. Soc.2005, 127, 4120-4121, SI.

  29. Calorimetry/Chemical Kinetics Summary q = ΔHrxn⋅ V ⋅ r

  30. Studies of Catalytic Reactions  Problem • Mechanistic studies on catalytic reactions are typically complicated due to : • • More than one reactant. • • Multi-step reactions involved in the process. • • Various states that a catalytic species may exist, either within the catalytic cycle • or external to it. • • Potential slow formation of active catalyst (induction period). • • Solubility of reactants. • • Many parameters are often not constant during a reaction. • Solutions : • • Studies are performed under constant volume and pressure to simplify analysis. • • Initial rate measurements (before saturation). • • Pseudo first order approximations. Rate a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121, SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense. time

  31. Pseudo First Order  More Problems • • Pseudo first order approximations. • r = k[A][B]  second order • - With a reactant in excess • [B] >> [A] • r = k’[A] •  “ High concentrations in one reagent may dramatically influence the • chemistry of the catalytic cycle, i.e., shifting the rate-limiting step and the • relative abundance of the catalytic species. ” a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121, SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  32. Pseudo First Order  More Problems • • Pseudo first order approximations. • r = k[A][B]  second order • - With a reactant in excess • [B] >> [A] • r = k’[A] •  “ High concentrations in one reagent may dramatically influence the • chemistry of the catalytic cycle, i.e., shifting the rate-limiting step and the • relative abundance of the catalytic species. ”  What do we do? a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121, SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  33. Pseudo First Order  More Problems • • Pseudo first order approximations. • r = k[A][B]  second order • - With a reactant in excess • [B] >> [A] • r = k’[A] •  “ High concentrations in one reagent may dramatically influence the • chemistry of the catalytic cycle, i.e., shifting the rate-limiting step and the • relative abundance of the catalytic species. ”  What do we do? - Let’s see some examples a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121, SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  34. Calorimetry in Organic Chemistry • Academic Organic Chemistry • Mechanism and chemical kinetics  Stephen L. Buchwald • Reaction order in catalyst  Eric N. Jacobsen • Reaction optimization  TamejiroHiyama and Tamio Hayashi •  Stephen L. Buchwald • Application in Process development • Comparison of chemical kinetics obtained by : • Calorimeter  Pfizer • Physical theories and equations • Estimation of hazardous or runaway reactions

  35. Mechanism Study Versus DiamineLigand  What is the role of the diamine ligand in this Cu(I) catalysed C-N bound formation reaction?  What is the reaction order in each of the reactants? Since this current study is focused on determining the precise role of the diamine ligand in this reaction, the reaction rate was examined as a function of [diamine]. ” a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  36. Copper Catalyzed C-N Bond Formation a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense. c) Buchwald, S. L. et al. J. Am. Chem. Soc. 2001, 123,7727-7729. d) Buchwald, S. L. et al. J. Am. Chem. Soc. 2002, 124, 11684-11688. e) Buchwald, S. L. et al. J. Am. Chem. Soc. 2004, 126, 3529-3533. f) Buchwald, S. L. et al. J. Am. Chem. Soc. 2010, 132, 6205–6213.

  37. Plausible Mechanism a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  38. Calorimetry and GC Conversion Comparison Agreement between the two methods  Heat Flow is proportional to reaction conversion Reaction Conditions: [3,5-dimethyliodobenzene]0 = 0.4 M, [2-pyrrolidinone]0 = 0.8 M, [K3PO4]0 = 1.0 M, [CuI]0 = 0.02 M, [trans-N,N'-dimethyl-1,2-cyclohexanediamine]0 = 0.04 M in 2.0 mL of Toluene at 363 K. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  39. Reaction Rate Versus Diamine Loading  Saturation after 0.1 M of diamine (5:1) diamine:Cu Reaction Conditions : Amide (0.8 M) ArX (0.4 M), CuI (0.02 M). a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  40. Reaction Rate Versus Cu:Diamine Loading  In both cases the reaction rate displays first-order dependence on catalyst concentration throughout the entire course of the reaction. The reaction rate linearly increases with the catalyst concentration while maintaing a constant Cu:diamine ratio. Vertical lines indicate the linear increasing. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  41. Reaction Rate Versus Base Loading The reaction rate exhibits nearly zero-order kinetics in [K3PO4] a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  42. Reaction Rate Versus Base Loading ΔHrxn = 163 ± 2 kJ/mol As a average for the 6 different rate analysis.  Zero-order kinetics in [K3PO4]. It is also important to note that the ΔHrxn for all of these experiments does not change significantly. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  43. Reaction Rate Versus Ar-X Loading • Green vertical lines indicate that the reaction rate linearly • decreases at 0.5M of [amide] with different concentrations of ArI and • diamine, confirming the first order dependence on [ArI]. The reaction rate • decreases constantly for different [ArI] at the same [amide]. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  44. Reaction Rate Versus Amide Loading 0.6 M 0.93 M 0.7 M 0.8 M 0.8 M 0.7 M 0.93 M 0.6 M  At low [diamine], the reaction rate becomes inhibited at higher [amide]. At high [diamine], the reaction rate actually increases as the [amide] increases. At low [diamine], the positive-order rate dependence on [1,2-diamine] corresponds to the inverse dependence on [amide] and at high [diamine] the zero-order rate dependence on [diamine] corresponds to the positive-order dependence on [amide]. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  45. Reaction Rate • Cu-diamine : first-order • ArI : first-order • K3PO4 : zero-order • Amide : It depends on the [diamine] • There exists a direct correlation between the reaction rate. • dependence on [1,2-diamine] and the dependence on [amide]. • Further analysis of reaction rate versus [amide] is required. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  46. Reaction Rate  Without diamine, there is no reaction from 0 to 90 °C. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  47. Reaction Rate

  48. Reaction Rate a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  49. Reaction Rate a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

  50. Reaction Rate Versus Diamine Loading Amide 0.7 M ArX 0.6 M [Amide] 0.7 M [Amide] 0.6 M Amide 1.0 M ArX 0.6 M [Amide] 0.9 M Amide 0.9 M ArX 0.4 M Inverse dependence on [amide] at low [diamine]. At high [diamine], a straight-line relationship is observed between the function rate/[Amide] versus [ArI]. Under high [diamine], K1[amide]<<1 and the resting state of the catalyst shifts to Species Cu-diamine, giving first-order kinetics in both [ArI] and [Amide] and zero-order kinetics in [diamine]. a) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc.2005, 127, 4120-4121. SI. b) Strieter, E. R.; Buchwald, S. L. Thesis Defense.

More Related