120 likes | 294 Views
Geoscience Basics of Geothermal Energy. Rick Allis, Joe Moore & Stuart Simmons rickallis@ utah.gov , jmoore@ egi.utah.edu, ssimmons@egi.utah.edu. 8:00-8:15 Introduction Stuart Simmons 8:15 -10:00 Geology/Mineralogy Joe Moore 10:00- 10 :30 Coffee
E N D
Geoscience Basics of Geothermal Energy Rick Allis, Joe Moore & Stuart Simmons rickallis@utah.gov, jmoore@egi.utah.edu, ssimmons@egi.utah.edu 8:00-8:15 Introduction Stuart Simmons 8:15-10:00 Geology/Mineralogy Joe Moore 10:00-10:30Coffee 10:30-11:45 Fluid Chemistry Stuart Simmons 11:45-12:30 Reservoirs Rick Allis
Geoscience of Geothermal Energy Physical: Heat & mass transfer Temperature-pressure gradients Permeability-porosity Hydrology & fluid flow GEOLOGY Chemical: Fluid compositions Fluid-mineral equilibria Mineral corrosion/deposition Hydrothermal alteration
Wairakei 2010 ~235 MW capacity 1729 GWh of net generation 54.6 million tonnes geothermal fluid 60.8 petajoules thermal >90% load factor >50 years of production
Power Cycles & Electricity Generation condensing turbines binary plant Graphics: Duffield & Sass, 2003 ~240° C >200° C <200° C vapor-dominated reservoir liquid-dominated reservoir liquid-dominated reservoir
Geothermal Power Wairakei Production MWth= m × (Hreservoir-H75°C)
Geothermal Systems: Stored vs Flowing volcano-intrusion extensional fault reservoir reservoir reservoir reservoirs < 3 km depth sedimentary basin reservoir liquid-dominated (100-300°C) vapor-dominated (220-250°C) 1000 2000 3000 enthalpy kJ/kg