210 likes | 391 Views
Electrochemische analysemethodes. Meten electrisch signaal Potentiometrie (meting potentiaal) Conductometrie (meting geleidbaarheid) Polarografie (meting stroomsterkte) Coulometrie (meting lading). Enkel de twee eerste zullen besproken worden.
E N D
Electrochemische analysemethodes Meten electrisch signaal • Potentiometrie (meting potentiaal) • Conductometrie (meting geleidbaarheid) • Polarografie (meting stroomsterkte) • Coulometrie (meting lading) Enkel de twee eerste zullen besproken worden Voornaamste toepassingen van potentiometrie en conductometrie: titraties: alternatieve equivalentiepuntsbepaling voor bepalingen waarbij de kleuromslag bij klassieke titraties moeilijk zichtbaar is Voordelen: betere nauwkeurigheid mogelijkheid tot automatisatie
potentiometrie spanning meten tussen twee electrodes die ondergedompeld zijn in de te meten oplossing. Indicator electrode, referentieelectrode meter om de spanning tussen de electrodes te meten (de potentiometer). Referentieelectrode: constante potentiaal Indicator electrode: potentiaal verandert in functie van de concentratie in oplossing
Redoxreactie: herhaling • Uitwisseling van electronen • Oxidatie: toename in OT trap, afgeven van electronen (vb ) • Reductie: daling in OT, opnemen van electronen (vb ) • Oxidatie en reductie gaan steeds gepaard
Redoxreactie: herhaling Zn plaatje in Cu2+ oplossing Blauwe kleur verdwijnt geleidelijk, Koper zet zich af op het Zn plaatje
Redoxreactie: herhaling 2 halfreacties
Redoxreactie gebruiken om electrische stroom te leveren: Galvanische cel • Kathode: reductie • Anode: oxidatie • Zoutbrug: behoud ladingsevenwicht in oplossing • Externe circuit: electronentransport van anode naar kathode
celspanning Kunnen alleen maar spanningsverschil meten • Ecel =Ereductie – Eoxidatie of • Ecel =Ekathode – Eanode • Indien we 1 van de 2 halfreacties constant houden (referentieelectrode) kunnen we het spanningsverloop aan de 2de compartiment volgen • Als referentieelectrode de standaard waterstofelectrode en concentraties in oplossing 1M dan geeft dit de standaard electrode potentiaal (E°) voor de halfreactie
Wet van Nernst: verandering van de spanning in functie van de concentratie Indien men volgende halfreactie beschouwt : a A + b B + n e- p P + q Q + …. Dan wordt de elektrode potentiaal gegeven door de Nernstvergelijking : R.T [P]p [Q]q E =E 0 - ------- ln ----------- n F [A]a [B]b waarbij E° de standaard electrode potentiaal is, karakteristiek voor een bepaald half reactie, met concentraties van reagentia en producten = 1mol/L R de universele gasconstante is of 98,314 J.K.mol, F de Faradayconstante of 96493 C.mol, T de absolute temperatuur (K) n het aantal electronen uitgewisseld in de reactie
Wet van Nernst of a A + b B + n e- p P + q Q 0,059 [P]p [Q]q E =E 0 - ------- log ----------- n [A]a [B]b voorbeeld : 0,059 1 E =E 0 - ------- log ---------- 2 [Cu 2+]
Praktische halfcellen • Referentielectroden • Standaard waterstof electrode H2 2H+ + 2e- Per conventie E=0 men dompelt in een 1 molaire oplossing van waterstofionen bij 25°C een Pt-elektrode, waar men zuiver waterstofgas bij 1.013 bar laat stromen (normaal omstandigheden
Hg2 Cl2 + 2e- Referentielectrodes van de tweede orde • Definitie:Een hafcel van de tweede orde bestaat uit een metaal in contact met een onoplosbaar zout van het metaal in aanwezigheid van een oplosbaar zout. • Calomelelectrode E= 0.242V (verzadigd KCl) E=0.281V (1M KCl) Volgende halfcelreactie treedt hier op: 2Hg + 2Cl-
Referentielectrodes van de tweede orde • Ag/AgCl referentieelectrode AgCl + e- Ag + Cl- E=0.197V (verzadigde KCl)
indicatorelectroden • Metaalelectroden • Nemen ofwel deel aan de reactie: Cu, Zn, Cd, Pb-metalen staafjes • Inerte electrode: Pt, Au: dient enkel voor electronenoverdracht • Redoxreactie vindt plaats in oplossing
indicatorelectroden • Glaselectrode voor pH metingen pH gevoelig glas
Speciale cellen • pH-meting : hier gebruikt men een glaselektrode en een calomelelektrode of de gecombineerde glas-calomel elektrode • Redoxtitraties : men maakt gebruik van een Pt-elektrode en een Calomel-elektrode of de combinatie ervan. • Neerslagtitraties : bv. Chloride met zilvernitraat : een zilverelektrode en een calomel elektrode (doch deze in een andere beker of met een zoutbrug omwille van de aanwezige Cl- in de Calomelelektrode)
Potentiometrische titratie Men zal het verloop van ofwel de pH of van het aantal mV uitzetten in funktie van het toegevoegd volume reagens. Deze curve ziet er uit als een S-vormige curve. Het E.P. valt samen met het buigpunt van de curve of de titratiekromme.
Potentiometrische zuur-base titratieHCl met NaOH • Grove titratie (schatting) • Titratie van 60ml onbekende HCl oplossing met 1mol/L NaOH • Gemeten pH=0,9 • Na toevoeging van 5ml NaOH • Gemeten pH=0,8 • Na toevoeging 10ml NaOH • Gemeten pH=1,2 • Na toevoeging 15ml NaOH • Gemeten pH=12 • Nauwkeurige titratie • Tussen 0 en 5ml in stappen van 5 ml, 5-10 ml stappen van 1ml, na 10ml in stappen van 0,5ml en voorbij het equivalentiepunt titreren (nog 5ml in stappen van 1ml) • Steeds pH noteren na iedere toevoeging • Equivalentiepunt wordt grafisch bepaald
Potentiometrische zuur-base titratieHCl met NaOH titratiecurve 1ste afgeleide 1ste afgeleide= DpH/Dvol 2de afgeleide =D2pH/D2vol Equivalentiepunt 13,5ml NaOH Gebruiken in titratieformule 2de afgeleide