220 likes | 410 Views
Röntgenstrahlen Erzeugung in Röntgenröhren. Inhalt. Aufbau einer Röntgenröhre Erzeugung von Röntgenstrahlung : Bremsstrahlung Charakteristische Strahlung Berechnung der Wellenlängen. 380 nm Violett 7,9 10 14 Hz. 780 nm rot 3,8 10 14 Hz.
E N D
Inhalt • Aufbau einer Röntgenröhre • Erzeugung von Röntgenstrahlung: • Bremsstrahlung • Charakteristische Strahlung • Berechnung der Wellenlängen
380 nm Violett 7,9 1014Hz 780 nm rot 3,8 1014Hz Frequenzbereiche der Oszillatoren: Röntgenstrahlung Technische Schwingkreise Molekül-schwingungen Valenz Elektronen Innere Orbitale Kern-reaktionen
Aufbau einer Röntgenröhre Heizstrom 4 A Röhrenfenster aus2,5 mm Al zur Durchleuchtung in Medizin und Technik Röhrenspannung 45 kV Röhrenstrom 30 mA Brems-strahlung Nach ca. 10-8 s: Charakteristische Strahlung oder aus 0,4 mm Beryllium zur Beugung an Kristallen
Emission einer Röntgenröhre • Bremsstrahlung, abhängig von der Spannung zwischen Kathode und Anode • Charakteristische Strahlung, abhängig von der Spannung zwischen Kathode und Anode und vom Material der Anode
Beispiel für den Gebrauch der Einheit Elektronenvolt • 50 keV ist die Energie eines Elektrons, das durch eine Spannung von 50 kV beschleunigt wurde. (Diese Einheit ist„handlicher“ als die Angabe von 8 .10-18J) 50 kV Beim vollständigen Abbremsen des Elektrons an der Anode wird diese Energie in „Bremsstrahlung“ verwandelt
Umrechnung der Beschleunigungs-Spannung in V zu Wellenlänge in nm Bei Beschleunigungsspannung 124 kV wird Strahlung mitλ = 0,1 Å = 0,01 nm emittiert (liegt im Röntgen Bereich des Spektrums)
Die Bremsstrahlung • Beim Aufprall auf die Anode wird das Elektron abgebremst: • Die zeitliche Änderung des Elektronenstroms induziert ein zeitlich veränderliches magnetisches Feld • Dadurch wird ein elektrisches Wirbelfeld induziert • Die sich zeitlich ändernden Felder werden mit Lichtgeschwindigkeit abgestrahlt
Ein schwingendes magnetisches Felds erzeugtein schwingendes elektrisches Feld
Charakteristische Strahlung • Atomare Anregung durch Ionisation auf einer inneren Schale Quelle für Zahlenwerte: • http://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html
32 43 21 31 Strahlungsemission bei Ionisation größerer Atome durch Stoß in der innersten Schale λ ~ 1/Z2 Bei Übergängen auf inneren Schalen liegen die Frequenzen im Röntgen-Bereich Die Zahlen stehen für die am Übergang beteiligten Nummern der Schalen (n, m)
Spektrum einer Röntgenröhre mit Wolfram Anode =10-10 m Bremsspektrum und charakteristische Strahlung einer W-Anode bei 160 kV Betriebsspannung (z. B. für Grobstrukturuntersuchung). Quelle: Pohl, Optik und Atomphysik
2,5GHz Mikro-wellenherd 50 Hz (Netz) 380 nm Violett 7,9 1014Hz 780 nm rot 3,8 1014Hz Emissionslinien einer Röhre mit Cu-Anode W Anode (Z=74) 0,02 nm Cu Kα
Zusammenfassung • Aufbau einer Röntgenröhre: Zwischen einer Glühkathode und der Anode liegt Hochspannung (40-100 kV) Zwei voneinander unabhängige Prozesse verursachen Röntgenstrahlung: • Auf der Anode abgebremste Elektronen senden Bremsstrahlung aus • Bei Beschleunigung mit Spannung U in [kV] folgt die Wellenlänge λ in [ Å ] λ = 12,4 / U [ Ǻ] (1 Å = 0,1 nm) • Die angeregten Atome der Anode emittieren zusätzlich charakteristische Strahlung
finis Heizstrom 4 A Emission der Bremsstrahlung bei Ankunft des Elektrons, verzögert folgt die Emission der charakteristischen Strahlung Röhrenspannung 45 kV Röhrenstrom 30 mA