1 / 20

Elena MASCIADRI

[ Ref : Masciadri E., submitted , AJ]. Elena MASCIADRI. [ Ref : Masciadri E., Avila R., Sanchez L., submitted , A&A]. IA-UNAM - MEXICO D.F. Selection of the BEST site for the GST.  Near Ground Wind (NGW) simulations.  Meso-Nh calibration for the

lanza
Download Presentation

Elena MASCIADRI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. [ Ref : Masciadri E., submitted, AJ] Elena MASCIADRI [ Ref : Masciadri E., Avila R., Sanchez L., submitted, A&A] IA-UNAM - MEXICO D.F. Selection of the BEST site for the GST Near Ground Wind (NGW) simulations  Meso-Nh calibration for the optical turbulence (OT) simulation

  2. Outline • NEAR GROUND WIND SIMULATIONS  Why to simuate the NGW with a meso-scale model  Numerical validation: methodology  Statistical results  Practical procedure for the site characterization • MESO-NH CALIBRATION  Why do we need a calibration  Calibration technique  Recent resultsstatistical reliability of Meso-Nh  FUTURE DEVELOPMENTS

  3. ELTs Near Ground Wind (NGW) WHY ? To limit the potential vibrations produced by the interaction windmechanical and optical structure of the telescope  Good image quality At the present time The only accessible and free of charge estimations of the NGW are analysis and forecast s provided by GCM horizontal resolution ~ 2° Meso-scale Models ? Site Altitude Site Latitude Sky Brightness Precipitable water vapour Cloud cover Optical extinction Optical turbulence (OT) Discriminatory Astroclimatic Parameters

  4. 120 km MAIDANAK (38.67 N, 66.88 E)  horizontal resolution: 1 km Wind Intensity (@ 5 m) 15 PARANAL (24.61 S, 70.40 W) (m/sec) 10 Paranal 5 Dv ~ 4 m/s Maidanak 0 1 2 4 3 5 6 9 7 8 10 12 11 months Can Meso-Nh select the site having the lowest near ground wind intensity ?  ESPAS(OWL - D = 100 m)

  5. MAIDANAK PARANAL 25 nights t = 3 hr 20 nights t = 3 hr 1 <v>sim=3.83 m/sec <v>sim=2.30 m/sec 0.8 <v>meas=6.36 m/sec <v>meas=2.33 m/sec 0.6 0.4 0.2 26.84 % 47.30 % 0 [Ref: Masciadri E., submitted, A&A] 20 nights t = 0 hr 25 nights MAIDANAK PARANAL t = 0 hr CDRE 1 1 <v0>sim=4.52 m/sec <v0>sim=1.67 m/sec 0.8 ECMWF <v>sim=3.83 m/sec <v>meas=2.33 m/sec <v>meas=6.36 m/sec <v>sim=2.30 m/sec 0.8 <v>meas=6.36 m/sec 0.6 <v>meas=2.33 m/sec 0.6 0.4 0.4 0.2 99.40 % 66.67 % 0.2 0 26.84 % 47.30 % 1 0.5 1.5 0.4 1 0 0.2 0 0.6 0.8 2 0 relative error relative error 19 % t = 3 hr t = 3 hr 73 % 1 <v0>sim=4.52 m/sec <v0>sim=1.67 m/sec 0.8 0.6 0.4 0.2 Meso-Nh 99.40 % 66.67 % 0 1 1 0 2 0.4 0.8 0.5 1.5 0.4 1.5 1 0.2 0 0.2 0.5 0 0.6 0.6 0.8 1 2 0 relative error relative error <v>meas=2.33 m/sec <v>meas=6.36 m/sec 1 ECMWF

  6. 1. Quality of the initialization data 2. Tendency of underestimating the strong wind shears in the first meters PARANAL 25 nights MAIDANAK 20 nights 10 15 8 10 4 simulated wind intensity simulated wind intensity 5 2 0 0 0 15 0 10 2 4 8 5 10 (m/s) (m/s) measured wind intensity measured wind intensity

  7. 17/7/1999: STRONG NGW wind intensity – temporal evolution wind intensity - east-west section 3000 5000 (m) (m) 2940 2880 4000 13 2820 2760 3000 14 * 2700 2640 2000 2580 2520 1000 2460 * 8 0 3 h (km) 2 h 4 8 20 0 12 16 wind intensity - east-west section wind intensity – vertical profil 3000 3000 (m) (m) 2740 2840 2480 2680 2220 2520 ~ 50 m 1960 2360 1700 4 10 8 0 15 0 12 20 (km) 16 5 (m/s)

  8. 8/5/1999: LOW NGW wind intensity – temporal evolution wind intensity - east-west section 5000 3000 (m) 2940 2880 4000 2820 2760 3000 * 2700 3 2000 2640 2580 1000 2520 2460 * 2.28 0 (km) 3 h 4 8 20 2 h 0 12 16 wind intensity – vertical profil wind intensity - east-west section 3000 3000 (m) (m) 2840 2740 2680 2480 2520 2220 ~ 50 m 2360 1960 1700 4 0 6 4 8 2 (m/s) 0 12 20 (km) 16

  9. [50 – 90] %

  10. <v> (m/sec) 6.36 ECMWF P h (m) 1. 4.52 M 2.33 1.67 ~ 200 m Maidanak Paranal 6.36 P 3.83 Meso-Nh 2. 2.30 10 m M 2.33 ground Maidanak Paranal 3. systematic simulations at 10 m selection of the site with the lowest NGW systematic simulations at ~250 m identification of sites with strong NGW CDRE [ 26- 47 ] %

  11. STUDY FEASIBILITY FUJITSU VPP5000 - ECMWF Project accepted at ECMWF 3000 SBUs 15 sites  630 h CPU (2300 SBUs)   3h  3047 sec CPU  Maidanak/Paranal 45 nights  42 h CPU  NCEP re-analysis (hor. resolution = 1.875°)  probable low reliability

  12. 1. 2. 3. 4. WHY A CALIBRATION ? Free parameter: Emin It was proven that Emin cannot be measured At least in the stable regions of the atmosphereEmin ÷ [CN2] 3/2 We can identify regions of the atmosphere (slabs of a few kms) characterized by different Emin values • Calculation of an optimized Emin ‘at posteriori’ fitting CN2 profiles (measured and simulated) Calibration = definition of theEmin with respect to the whole atmosphere (~ 20 km)

  13. boundary layer First time: calibration without off-set free atmosphere surface layer • dome seeing • • • E*min 1.2·10-3 20 (km) a5 15 a4 10 a3 5 a2 a1 0 2.5·10-3 5·10-4 10-3 1.5·10-3 2·10-3 (kg m2 t-2) Least Square Method

  14. Averaged estimation over 10 nights San Pedro Martir site testing campaign 5/2000 20 H (km) Bold line: GS 15 Thin line: Balloons Dotted line: Meso-Nh 10 5 eTOT= 0.93 ‘’ eTOT= 0.79 ‘’ eBL= 0.77 ‘’ eBL= 0.62 ‘’ 0 eFA=0.45 ‘’ eFA=0.42 ‘’ 10-17 10-15 10-18 10-16 CN2 (m-2/3) MNH - surf. GS - dome

  15. San Pedro Martir site testing campaign (5/2000) 19/5/2000 9/5/2000 22/5/2000 21/5/2000 Thin line: Meso-Nh Dotted line: Balloons Bold line: GS

  16. ? * DP = Pmeas - Psim DP = Pscidar - Pballoons SAN PEDRO MÁRTIR CAMPAIGN 2000 10nights De sci. - sim. ~ De *sci. – bal <30 % climatologic reliability reliability over the temporal scale of one night De sci. - sim. ~ De *sci. – bal <40 % [ Ref : Masciadri, Avila, Sanchez, submitted, A&A] FORECAST SCORE ….COMPARISON BETWEEN FORECASTS AND MEASUREMENTS [ Ref : Masciadri & Jabouille, A&A, 376,727, 2001]

  17. PRESENT • Simulations of C2N (z) profiles over 1 year (San Pedro Martir) seasonal variation of C2N (z) • seasonal variation of ALL the integrated parameters (e, qAO,tAO…..)  Comparison simulations-measurements over a real LONG campaign (months) over at least 2 sites FUTURE 1°GS/LBT Mt. Graham ? 2°

  18. viewed by Meso-Nh model 60 km horizontal resolution = 400 m Mt. Graham - LBT site Dan McKenna (Stewart Observatory) Mickey Reeds (ASU Meso Mod. Group) h = 3247 m ( 32.7013 N, 109.8919 W) 1°

  19.  Meso-scale simulations - resol: [400-500] m  Micro-scale simulations - resol: [10-20] m GST(Giant Segmented Telescope) NOAO/CTIO/Gemini Priorities (sites): Mauna Kea (Hawaii) North Chili South US North Mexico NUMERICAL MODELISATION Chajnantor - 400 m San Pedro Martir - 400 m Mauna Kea - 1 k m 60 km 150 km 14.4 km

  20. END

More Related