1 / 15

Fungsi Harmonik

Fungsi Harmonik. Oleh : Kelompok 5 Farid Sugiono 070210191156 Akhmad Mukhlis 070210191154 M. Sidik Yusuf 070210191157 M. Sofyan Hadi 070210191140 Malihur Rohma 070210191143 Martha Citra D. 070210191161. Fungsi Harmonik

lark
Download Presentation

Fungsi Harmonik

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fungsi Harmonik Oleh :Kelompok 5 Farid Sugiono 070210191156 Akhmad Mukhlis 070210191154 M. Sidik Yusuf 070210191157 M. Sofyan Hadi 070210191140 Malihur Rohma 070210191143 Martha Citra D. 070210191161

  2. FungsiHarmonik f(z) = u(x,y) + iv(x,y) analitikpada D maka u dan v mempunyaiderivatifparsialdisemuaorde yang kontinuepada D. Jadidalam D berlaku C-R , ux = vydanuy = –vx Karenaderifatif-derivatifparsialdari u dan v kontinuedalam D, makaberlakuvxy = vyx. Jikadalamux = vydanuy = –vxdiderivatifkanparsialterhadap x dan y maka(x,y) D berlaku uxx + uyy = 0 vxx = vyy = 0

  3. Jika f analitikpada D maka u dan v pada D memenuhipersamaandifferensial Laplacedalam 2 dimensi. u dan v dimana f(z) = u(x,y) + iv(x,y) analitikpadasuatu domain makaf(z) harmonikpada domain tersebut.

  4. Duafungsi u dan v sedemikiansehingga f(z) = u(x,y) + iv(x,y) analitikdalamsuatu domain dinamakanDuaFungsiyang HarmonikKonjugatdalam domain itu. Suatufungsi 2 peubah (riil) ygmemenuhi pers. Laplace disebutfungsi Harmonic (u,v:harmonic function) u : fungsisekawanharmonis v v : fungsisekawanharmonis u

  5. Contoh 3 Diberikan u(x,y) harmonikpada D dantentukanfungsi v yang harmonikkonjugatdengan u = 4xy3 – 4x3y, (x,y) ℂ Jawab : Misaldiklaimkonjugatnyaadalah v(x,y) jadi f(z) = u(x,y) + iv(x,y) analitikpadaℂsedemikiansehinggaberlaku C-R ux = vydanuy = -vx ux = 4y3 – 12x2yvy = 4y3 – 12x2y uy= 12xy2 – 4x3v= y4 – 6x2y2 + g(x) karenavx= –uymaka –12xy2 + g’(x) = –12xy2 + 4x3sehingga g’(x) = 4x3diperoleh g(x) = x4 + C Jadi v = y4 – 6x2y2 + x4 + C

  6. Cara Milne Thomson Cara yang lebihpraktismenentukanfungsiharmonikkonjugatataudarifungsiharmonik u diberikan u(x,y) harmonikpada D andaikan v(x,y) sehingga f(z) = u(x,y)+ iv(x,y) analitikpada D f”(z) = ux(x,y) + ivx(x,y) sesuaipersamaan C-R : f”(z) = ux(x,y) – iuy(x,y) z = x + iydan = x – iysehinggadiperoleh f(z) = ux –iuy

  7. Suatuidentitasdalam z dan , jikadiambil = z maka f’(z) = ux(z,0) – iuy(z,0) Jadi f(z) adalahfungsi yang derivatifnyaux(z,0) – iuy(z,0) kemudiandidapat v(x,y)

  8. Contoh 5 Dari Contoh 3 dengan u= 4xy3 – 4x3y, (x,y) ℂ, jikadiselesaikandenganmenggunakancara Milne Thomson. Jawab : ux = 4y3 – 12x2y uy= 12xy2 – 4x3 f’(z) = ux(z,0) – iuy(z,0) = –i(– 4z3) = 4iz3 sehingga f(z) = iz4 + C f(z) = i(x + iy)4 + C = 4xy3 – 4x3y + i(x4 – 6x2y2 + y4) + C

  9. Thankz

More Related