480 likes | 493 Views
Practice finding fractions of different amounts of money, compare fractions with the same denominator, and solve a sharing problem to determine who gets the most money.
E N D
Who gets the most? Dr Fog Presents Year 7 (National Numeracy Strategy) (Based on DFEE Sample Lessons) www.DrFog.co.uk
Resources • None!
Mental Learning Objective • I can find fractions of amounts of money.
Mental Learning Task • Today we are going to start by focusing on finding fractions of different amounts of money.
Mental Learning Task What is half of £10?
Mental Learning Task What is quarter of £10?
Mental Learning Task What is half of £5?
Mental Learning Task What is quarter of £2?
Mental Learning Task What is half of £100?
Mental Learning Task What is quarter of £100?
Mental Learning Task What is a third of £12?
Mental Learning Task What is two thirds of £12?
Mental Learning Task What is two thirds of £9?
Mental Learning Task What is one third of £18?
Mental Learning Task What is two thirds of £18?
Mental Learning Objective • I can find fractions of amounts of money.
Main Learning Objective • I can compare fractions with the same denominator. • I can compare fractions with different denominators by converting them to the same denominator.
Key idea I can find fractions of time and money by making sure the fractions have the same denominator.
Main Learning Task • Today we are going to look at how to work with fractions, and decide which is the largest fraction.
Main Learning Task • Here is a sharing problem we are going to solve together… • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • Who gets the most money with plan A? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • Who gets the least money with plan A? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • How much does each child get with Plan A? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
5 10 2 10 = Main Learning Task • As a fraction, how much more does Alice get than Chloe? • Alice gets 5 Bryn gets 3 Chloe gets 2 • 10 10 10 3 10
5 10 3 10 = Main Learning Task • As a fraction, how much more does Alice get than Bryn? • Alice gets 5 Bryn gets 3 Chloe gets 2 • 10 10 10 2 10
5 10 3 10 1 5 = = Main Learning Task • How else can we write this fraction? • Alice gets 5 Bryn gets 3 Chloe gets 2 • 10 10 10 2 10
2 10 3 10 = Main Learning Task • As a fraction,how much does Chloe and Bryn get together? • Alice gets 5 Bryn gets 3 Chloe gets 2 • 10 10 10 5 10
2 10 3 10 1 2 = = Main Learning Task • How else could we write this fraction? • Alice gets 5 Bryn gets 3 Chloe gets 2 • 10 10 10 5 10
Main Learning Task • How much does each child get with Plan B? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • It isn’t so easy to see who gets the most this time is it? • Why not? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • There are quarters, twelfths and thirds. • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • What can you tell me about these fractions? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • Does Alice get more or less than Chloe? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • How can you work out who gets the most and by how much? • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 3/10, Chloe 1/3
Main Learning Task • We can change them all to the same ‘kind’ that is twelfths. • There are three children in a family, Alice, Bryn and Chloe. Their grandmother gives them £240 to share between them. She has devised several plans for sharing it. • Plan A:Alice gets 5/10 of the money, Bryn 3/10 and Chloe 2/10. • Plan B:Alice gets ¼ of the money, Bryn 5/12, Chloe 1/3
Main Learning Task • We can change them all to the same ‘kind’ that is twelfths. Alice = 1 4 = ____ 12 = ____ 12 Bryn = 5 12 Chloe = 1 3 = ____ 12
Main Learning Task • To find differences between amounts, just take away the fractions now they are of the same kind. Alice = 1 4 = ____ 12 = ____ 12 Bryn = 5 12 Chloe = 1 3 = ____ 12
Main Learning Task • To find out how much money each gets, divide £240 by 12. • Then multiply by the top number of the fraction. Alice = 1 4 = ____ 12 = ____ 12 Bryn = 5 12 Chloe = 1 3 = ____ 12
Main Learning Task • Solve these questions. • There are three children in a family. Alice, Bryn and Chloe. There grandmother gives them £240 to share between them. • Simplest:- Alice gets1/8, Bryn 2/8 and Chloe 5/8 • Middle:- Alice gets ½, Bryn 3/8, Chloe 3/8 • Hard:-Alice gets ¼, Bryn 10/24, Chloe 1/3 • Who gets the most? • Who gets the least? • What is the difference between these amounts? • What fraction of the whole amount is that? • Write this as a difference between two fractions.
Main Learning Objective • I can compare fractions with the same denominator. • I can compare fractions with different denominators by converting them to the same denominator.
Plenary • Share your findings with the rest of the class. • Write your workings and answer on the board.
Plenary • We are now going to finish with some mental work based on the fractions of an hour.
Plenary How many minutes are there in a half hour?
Plenary What is half 60?
Plenary What is quarter 60?
Plenary How many minutes are there in three quarters of an hour?
Review of Key Idea • I can find fractions of time and money by making sure the fractions have the same denominator. • Did you learn this today?
Where Can I Find More Resources Like This? • You can now visit my teaching resource website at http://www.DrFog.co.uk • You can click here to search for more of my teaching resources. • Click here to visit my TES shop!