1 / 40

Ultra-high Energy Cosmic Rays: Challenges and Opportunities

Ultra-high Energy Cosmic Rays: Challenges and Opportunities. Renxin Xu ( 徐仁新 ) School of Physics, Peking University Talk presented at the Conference of 基于羊八井平台的交叉学科研究 April 6, 2004, CCAST. “ UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu. SUMMARY.

lassie
Download Presentation

Ultra-high Energy Cosmic Rays: Challenges and Opportunities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ultra-high Energy Cosmic Rays: Challenges and Opportunities Renxin Xu (徐仁新) School of Physics, Peking University Talk presented at the Conference of 基于羊八井平台的交叉学科研究 April 6, 2004, CCAST “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  2. SUMMARY • Introduction: CRs as HEP Frontier • UHECRs beyond the GZK cutoff • UHECRs I: beyond standard lore? • Lorentz Invariance • TDs: fossils of the GU era • Z-bursts • Others • UHECRs II:  or strangelets? • Conclusions “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  3. Introduction: CRs as HEP Frontier • The higher the particle energy attained, the smaller __the scale of physics which can be probed. • Cosmic rays vs. Particle physics • 1937 (Anderson & Neddermeyer):  • 1947(Power):  • 1947(Rochester & Butler): strange part. 0, K, ... • Cosmic rays vs. Astrophysics • Generally, astrophysics studies “cosmic rays” • Astrophysics offers extreme environments “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  4. Introduction: CRs as HEP Frontier UHECRs: >~1019eV Within the Galaxy The highest! “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  5. SUMMARY • Introduction: CRs as HEP Frontier • UHECRs beyond the GZK cutoff • UHECRs I: beyond standard lore? • Lorentz Invariance • TDs: fossils of the GU era • Z-bursts • Others • UHECRs II:  or strangelets? • Conclusions “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  6. UHECRs beyond the GZK cutoff • GZK cutoff: estimations Ep ~ 1019 eV,  ~ Ep/1GeV ~ 1010 ECB ~ 3 K ~ 10-4 eV Electron rest frame E’CB ~  ECB ~ MeV Greisen PRL (1966); Zatsepin & Kuzmin JETP (1966) “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  7. UHECRs beyond the GZK cutoff • GZK cutoff: in theory Loss length for Proton with pair and photopion productions Scale of the Galaxy “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  8. UHECRs beyond the GZK cutoff • The GZK cutoff with threshold • Other particles Photon, Iron “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  9. UHECRs beyond the GZK cutoff • No clear GZK cutoff observed Stecker 2003 “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  10. UHECRs beyond the GZK cutoff • Prediction vs. observation Stecker 2003 “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  11. SUMMARY • Introduction: CRs as HEP Frontier • UHECRs beyond the GZK cutoff • UHECRs I: beyond standard lore? • Lorentz Invariance • TDs: fossils of the GU era • Z-bursts • Others • UHECRs II:  or strangelets? • Conclusions “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  12. UHECRs I: beyond standard lore? • Lorentz symmetry (invariance) Essence of special relativity: • no absolute reference frame • Poincare group = T(4) + O(1, 3) • Lorentz group O(1, 3) = 3R + 3R´ • light propagates at a maximum constant speed c in all reference boosts “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  13. UHECRs I: beyond standard lore? • Quantum space-time foam Heisenberg relation Mcl ~ l ~ /(Mc) Schwartzschild radius Rs~ GM/c2 Virtual particles contribute to curvature significantly when Rs~ l Plank mass: Mpl = ( c/G)1/2 = 2.1810-5 g = 1.221016 TeV “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  14. UHECRs I: beyond standard lore? • Lorentz violation? Modified dispersion relations? (Jacobson, T., Liberati, S. & Mattingly, D. Nature 424, 1019–1021, 2003) Photons: Electrons:  opposites for L or R “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  15. UHECRs I: beyond standard lore? • LV of UHECRs? Coleman and Glashow (1999, PRD59, 116008): show that only a very tiny amount of LI symmetry breaking is required to avoid the GZK effect by suppressing photomeson interactions between ultrahigh energy protons and the CBR. “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  16. UHECRs I: beyond standard lore? • TD: fossils of the GU era • Topological defects (TD) may be produced at the post-inflation stage of the early Universe: e.g., monopoles, cosmic strings, monopoles connected by strings, etc. • Superheavy particles (called X-particles) could be emitted during TD evolution; e.g., annihilation of monopole-antimonopole. • X-particles could be: superheavy Higgs particles gauge bosons massive SUSY particles “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  17. UHECRs I: beyond standard lore? • TD: fossils of the GU era Fragmentation of X-particles “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  18. UHECRs I: beyond standard lore? • TD: fossils of the GU era Berezinsky et al. PRD58 103515 (1998) “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  19. UHECRs I: beyond standard lore? • Z-bursts Weakly interacting particles such as neutrinos will have no difficulty in propagating over extragalactic distances Difficulty in the neutrino hypothesis: The fly’s Eye event occurred high in the atmosphere, whereas the expected event rate for early development of neutrino-induced air shower is down from that of an electromagnetic or hadronic interaction by six orders of magnitude. But “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  20. UHECRs I: beyond standard lore? • Z-bursts Weiler, T. 1999, Astropart. Phys., 11 303 • Larger cross section of resonant Z0production by - occurs for • E = mz2/(2m) ~ 41021/(m /eV) eV [mz~ 91 GeV, m~ (0.05-8.4) eV; ~10-32cm2] • Clustering of the 1.9 K cosmic background neutrinos • ~70% of interactions Z-burst: photons (~30) + nucleons (~2.7) • These photons and nucleons produced within our supergalactic halo propagate to earth and initiate super-GZK air showers “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  21. UHECRs I: beyond standard lore? • Others • Ultraheavy dark matter particles: ‘wimpzillas’ • Other new particles: e.g., neutral hadrons containing a light gluino “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  22. SUMMARY • Introduction: CRs as HEP Frontier • UHECRs beyond the GZK cutoff • UHECRs I: beyond standard lore? • Lorentz Invariance • TDs: fossils of the GU era • Z-bursts • Others • UHECRs II:  or strangelets? • Conclusions “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  23. Black holes in our Universe • Supermassive black holes • Stellar black holes • Primordial black holes TeV-scale black holes? “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  24. Why TeV-scale BHs • The hierarchy problem and EDs Why? • The Plank scale • But, the electroweak scale “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  25. Why TeV-scale BHs • Arkani-Hamed, Dimopoulos & Dvali 1998, Phys. Lett. B429 263 • The geometry withExtra spatial Demensions (EDs)might be responsible for the hierarchy between Mpl and MEW. • The fundamental gravity scale with n EDs “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  26. Why TeV-scale BHs • What if M* ~ MEW ~ TeV ... • Implication I: Large EDs with Radius R Observation? “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  27. Why TeV-scale BHs • Implication II: TeV-scale mini black holes “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  28. The interaction of UHE with ... • When the c.m. energy Ecm=(2c2mqE)1/2 > M*, A TeV-scale black hole forms, with an interaction cross section BH ~ rs2 UHE E rs . Quark “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  29. The interaction of UHE with ... • Gravity interaction dominates if E> ~1015eV Increase the cross section! Economic ideal: UHE Feng-Shapere PRL 88 (2002) 021303 “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  30. The interaction of UHE with ... • The Schwartzchild radius, with n EDs • The Hawking radiation, with n EDs “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  31. The interaction of UHE with ... • UHE bombarding a nucleon: • in relativistic heavy ion colliders • in atmospheric detectors • UHE bombarding a Bare SS: • Collapse to a stellar black hole? “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  32. The interaction of UHE with ... • What is a Bare Strange Star? • crusted • bare “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  33. The interaction of UHE with ... • Possible evidence for bare strange stars • Drifting subpulses in radio emission • No atomic spectrum in X-ray emission • Extreme super-Eddington emission in SGRs • Glitch and free-precession of radio pulsars For reviews, see: Xu (astro-ph/0211563) Xu (astro-ph/0310050) “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  34. The interaction of UHE with ... • Two steps of collapse: • 1st: “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  35. The interaction of UHE with ... • 2nd: “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  36. The interaction of UHE with ... • BSSs as probe to the flux of UHE Exist of BSS “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  37. UHECRs: Strangelets? • What isStrangelet?=>A lump of strange matter • Advantages if UHECRs are strangelets: • Larger mass Byond GZK cutoff • Higher electricity Easier to accelerate • Not point-like No collapse to BHs ML03 “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  38. UHECRs: Strangelets? • What is the astrophysicalorigin of strangelets? • in early cosmology? • after supernova exploration! • Acceleration in induced electric field ~ 1017/P10eV • strangelets left behind in debris disk Planets observed around radio pulsars? Soft -ray Repeater: burst via collision? “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  39. SUMMARY • Introduction: CRs as HEP Frontier • UHECRs beyond the GZK cutoff • UHECRs I: beyond standard lore? • Lorentz Invariance • TDs: fossils of the GU era • Z-bursts • Others • UHECRs II:  or strangelets? • Conclusions “UHECRs” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

  40. Conclusions • The cosmic ray study at the highest energy __(UHECRs) is again the frontier of Part. Ph. • UHECRs could potentially open a window __to probe new physics beyond the SM • Strangelets may be candidates of UHECRs, __and may evencontribute a significant part __of cosmic rays with energy < 1019 eV! “UHECRs: Strangelets?” http://vega.bac.pku.edu.cn/rxxu R.X. Xu

More Related